Name:

Enrolment No:

UPES

End Semester Examination, May 2023

Course: Organic Chemistry I
Program: B.Sc. (H) Chemistry
Course Code: CHEM 1005

Semester: II
Time: 03 hrs.
Max. Marks: 100

Instructions: Attempt all the questions.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO
Q 1	Give IUPAC names of the following compounds: CH ₃ -C = CH-CH-C = C-CH ₃ a) C ₂ H ₅ Cl Br d)	4	CO1
Q 2	What happens when 1,3-butadiene reacts with Br ₂ . Also, discuss the mechanism.	4	CO3
Q 3	Arrange the following as directed: CH ₃ NO ₂ NH ₂ (Increasing order of reactivity towards electrophilic substitution reactions)	4	CO1

	b) n-pentane, 2-methylbutane, 2,2-dimethylpropane (increasing order of boiling point)		
Q 4	Write down the structural isomers of heptane along with their names.	4	CO1
Q 5	Write the structural formula of a compound of molecular formula C ₄ H ₈ Cl ₂ in which: (a) All the carbons belong to methylene groups. (b) None of the carbons belong to methylene groups.	4	CO1
	SECTION B		
Q 6	Determine the configuration of each of the following alkenes as Z or E as appropriate: (a) H ₃ C CH ₂ OH (b) H ₃ C CH ₂ CH ₂ CH ₂ F CH ₂ CH ₂ CH ₂ CH ₃ (c) H ₃ C C(CH ₂ CH ₂ OH CH ₂ CH ₂ CH ₂ CH CH ₃ CH CH CH ₃ CH CH CH ₃ CH CH CH CH CH CH CH CH CH CH	10	CO1
Q 7	Classify the following compounds into aromatic, antiaromatic and non-aromatic with proper justification: H	10	CO2

Q 8	 Explain the reasons of the following: a) Chlorobenzene has strong electron withdrawing chlorine group but still o,p-directing in nature. b) Cyclohexane and higher cyclic alkanes are highly stable. c) Ethylene undergoes electrophilic addition reactions. d) Benzyl chloride is a highly reactive compound. e) Benzene undergoes electrophilic substitution reactions. 	10	CO2
Q 9	Differentiate between E ¹ , E ² and E ¹ cb mechanism using the suitable examples. OR Discuss the mechanism of the following reactions: a) Nitration of benzene b) Acetylation of benzene SECTION-C	10	CO3
Q 10	a) Write a short note on i) Ozonolysis reaction. ii) Reactivity of alkanes. b) Write down the following conversions: i) Ethane to BHC ii) Benzene sulphonic acid to toluene iii) 2-butyne to acetaldehyde iv) Ethane to ethylene glycol v) Ethyl chloride to acetone	5+15	CO2
Q 11	a) Which alkenes will be obtained on dehydration of each of the following alcohols: i) 3-Ethyl-3-pentanol ii) 2-Propanol iii) 1-Propanol iv) 2,3,3-Trimethyl-2-butanol v) 2,3-dimethyl-2-butanol	10+4+6	CO2

	Write structural formulae for all the alkenes that can be formed in the reaction of 2-bromobutane with potassium ethoxide. Explain the major and minor products with reason. How will you differentiate between 1-butyne and 2-butyne in lab. Explain with the help of suitable reactions.		
	OR		
a) i) ii) iii) iv) v)	1,3-butadiene reacts with ethylene.	10+10	
b)	Discuss the stereochemistry of the following: i) Addition of Br ₂ on cis-2-butene. ii) Elimination of HBr from CH ₃ H — Br		
	H — Br CH₃		