Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIESEND SEMESTER, MAY 2023			
Course: Theory of plates \& Shells Program: M. Tech (Structures) Course Code: CIVL 7012 Instructions: Attempt all the questions		ester: I e: 3Hrs . Mark PER - I	
SECTION A			
S. No.		Marks	CO
Q. 1	Briefly explain the deflection profile of rectangular loaded plates.	4	CO1
Q. 2	Write max deflections \& stress produced in cylindrically plates with clamped edges	4	CO2
Q. 3	Briefly explain membrane theory of shells.	4	CO3
Q. 4	Write equations of equilibrium of shells.	4	CO4
Q. 5	How do you classify shells into long and short shells as per various theories?	4	CO4
SECTION B			
Q. 6	Derive the expression for Bending moment \& curvature in pure bending of plates	10	CO1
Q. 7	Derive the differential equation for deflection for the symmetrical bending of a circular plate with lateral loads of the type $\frac{d^{3} w}{d r^{3}}+\frac{1}{r} \frac{d^{2} w}{d r^{2}}-\frac{1}{r^{2}} \frac{d w}{d r}=\frac{q}{d}$ where $\mathrm{Q}=$ shear force, $\mathrm{q}=$ Intensity of loading, $\mathrm{r}=$ radius of plate, $\mathrm{D}=$ flexural rigidity of plate	10	CO2
Q. 8	A cylindrical shell subject to UDL (Self-weight + imposed load). Derive the expression for $N \varnothing, N x \& N x \emptyset$	10	CO3
Q. 9	Calculate the membrane stress at central span, quarter span \& end section for a cylindrical shell of 20 m span, 10 m radius $\&$ semi vertex angle 45°. Shell is 90 mm thick \& subjected to all-inclusive UDL of $2.5 \mathrm{kN} / \mathrm{m}^{2}$ OR Derive the expression for equations of equilibrium of a shell	10	CO4
SECTION-C			
Q. 10	A spherical dome of 15 m radius \& rise 4 m carries an all-inclusive load of $3 \mathrm{kN} / \mathrm{m}^{2}$. Calculate the various stresses developed in the shells due to this load.	20	$\mathrm{CO3}$
Q. 11	A simply supported rectangular plate of dimension axbxh is subjected to load ' P ' acting over an area $u \times v$. Derive the expression for deflection. Adopt Navier's approach. OR Derive expressions for deflection, shear force and bending moment for a circular plate with simply supported boundary conditions subjected to uniformly distributed loading.	20	CO2

