Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023

Programme Name: M. Tech (PE)

Semester: II

Nos. of page(s) : 01

Instructions: All questions are compulsory

	SECTION A		
S. No.		Marks	CO
Q 1	Explain the application of CFD as research tool with example.	4	CO1
Q 2	Write the basic steps to solve the CFD related problem.	4	CO1
Q 3	Illustrate conservative relation for a Newtonian fluid.	4	CO2
Q 4	Summarize mass transfer approach in CFD.	4	CO2
Q 5	Write the advantages of CFD over experimental methods.	4	CO1
	SECTION B		
Q 6	Write a difference between empirical and CFD approach to solve the problem related to fluid motion. OR Explain the equation of state with suitable formulation.	10	CO1
Q 7	Derive the equation for Navier-stokes equation for Newtonian flow.	10	CO2
Q 8	Explain forward, backward, and central difference method.	10	CO2
Q 9	Derive the conservative form of continuity and momentum equation	10	CO3
	SECTION-C		1
Q 10	Consider steady, fully developed laminar fluid flow through square duct in z-Direction. Derive the partial differential equation and solve the equation considering uniform grid spacing. Assume no flow on the wall of the duct with the constant as -1000. (Assume six element discretization)	20	CO3
Q 11	Illustrate the Analysis of numerical scheme with suitable example.	20	CO4