Name:

Enrolment No:

UPESEnd Semester Examination, May 2023Course: System Analysis and Process OptimizationSemester : IIProgram: M. Tech Chemical EngineeringTime : 03 hrs.Course Code: CHPD7027Max. Marks: 100

Instructions: 1) Answer the questions section wise in the answer booklet. 2) Assume suitable data wherever necessary. 3) The notations used here have the usual meanings. SECTION A

S. No.	(5Qx4M=20Marks)		60
		Marks	CO
Q 1	Define a saddle point and indicate its significance.	04	CO1
Q 2	Differentiate between a slack and a surplus variable.	04	CO1
Q 3	State the significance of Lagrange multipliers	04	CO1
Q 4	Write down the standard form of single objective optimization problem.	04	CO1
Q 5	Define gradient of a function.	04	C01
	SECTION B		1
	(4Qx10M= 40 Marks)		
Q 6	Minimize $f = x_1^2 + (x_2 - 1)^2$ subject to $-2x_1^2 + x_2 = 4$	10	CO2
	by Lagrange multiplier method.	10	
Q 7	Find the minimum of $f = x(x - 1.5)$ in the interval (0.0, 1.0) to within 10% of the exact value using interval halving method.	10	CO2
Q 8	Perform one iteration using Cauchy's method to minimize $f(x) = 9x_1^2 + 4x_1x_2 + 7x_2^2$ using $X_0 = \begin{cases} 1 \\ 1 \end{cases}$	10	CO3
Q 9	Discuss the algorithm of secant method.		
	OR	10	CO4
	Discuss about the interior penalty function method.		
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Explain the solution algorithm used in NSGA – II optimization technique.	20	CO3

Q 11	Using a simplex method, Maximize $f = 3x_1 + 2x_2$ Subject to constraints $2x_1 + x_2 \le 10$; $x_1 + x_2 \le 8$; $x_1 \le 4$ and $x_1, x_2 \ge 0$		
	OR	20	CO4
	Discuss the algorithm of Newton's method for the minimization of multivariable functions. Show that the Newton's method finds the minimum of a quadratic function in one iteration		