
Name: Enrolme	ame: Arrolment No:		
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES		
	End Semester Examination, May 2023		
Program Name: M Tech Chemical EngineeringSemesterCourse Name: Advanced Process ControlTime		: II : 3 hours	
Course Code : CHPD 7013 Max. Mar			
Nos. of J Instructiname on		e roll num	per and
	SECTION A (6X10=60 marks)		
S. No.		Marks	СО
1	<i>Outline</i> in detail LVDT with a neat diagram. State various applications of LVDT in the industry.	10	CO1
2	<i>Recall</i> about the inherent characteristics of control valves	10	CO1
3	$A = 2 \text{ ft}^{2}$ $R_{1} = 2$ $R_{2} = 5$ $R_{1} = 2 \text{ ft}^{2}$ $R_{2} = 5$ $R_{2} = 5$ $R_{2} = 5$ $R_{2} = 5$ $R_{1} = 2 \text{ ft}^{2}$ $R_{2} = 5$	10	CO2
4	$G_{1} \xrightarrow{G_{1}} G_{3} \xrightarrow{+} G_{4} \xrightarrow{G_{6}} Y$ $G_{5} G_{5} G_{6} Y$ Connect Y(s) and X(s) as a transfer function.	10	CO3

	Answer both the questions. Each question carries 10 marks		
8	 a. There are N storage tank of volume V Arranged so that when water is fed into the first tank into the second tank and so on. Each tank initially contains component A at some concentration Co and is equipped with a perfect stirrer. A time zero, a stream of zero concentration is fed into the first tank at volumetric rate q. Predict the resulting concentration in each tank as a function of time. b. Three identical tanks are operated in series in a non-interacting fashion. For each tank R=1, τ = 1. If the deviation in flow rate to the first tank in an impulse function of magnitude 2, Predict an expression for H(s) where H is the deviation in level in the third tank and obtain the deviation value at time t=1.5. 	20	CO2