Name:

Enrolment No:

UPES
End Semester Examination, May 2023Course: Process Modelling and SimulationSemester : IIProgram: M. Tech Chemical EngineeringTime : 03 hrs.Course Code: CHPD7009Max. Marks: 100

Instructions: 1) Answer the questions section wise in the answer booklet. 2) Assume suitable data wherever necessary. 3) The notations used here have the usual meanings.

SECTION A

S. No.		Marks	CO
Q 1	Discuss about dynamic modelling of a chemical engineering system.	04	CO1
Q 2	Explain about the mathematical consistency of a process model.	04	CO1
Q 3	Discuss the sequential modular approach of process simulation	04	CO1
Q 4	State the assumptions of continuously stirred tank reactor.	04	CO1
Q 5	Define the variables and the parameters used in a mathematical model.	04	CO1
	SECTION B		
	(4Qx10M= 40 Marks)		
<u> </u>	· - /		1
Q 6	Illustrate the application of Neumann and Dirichlet boundary conditions in mathematical modelling with suitable examples.	10	CO2
Q 7	For laminar flow, the friction coefficient 'f' is related to Reynolds number as $f = aRe^{b}$. Determine $a \& b$ using a method of least squares to fit the following data.	10 CO	
	f 500 1000 1500 2000 Re 0.0320 0.0160 0.0107 0.0080		CO2
Q 8	Write down the mass balance and energy balance equations for multicomponent distillation column for single stage operation.	10	CO3
Q 9	Describe the solution of partial differential equations by Orthogonal collocation technique.	10	CO5
	Classify the partial differential equations.		

	SECTION-C				
(2Qx20M=40 Marks)					
Q 10	Explain the application of a Newton-Raphson's method to solve the mathematical model equations of a triple-effect evaporator system for a forward feed arrangement.	20	CO3		
Q 11	Develop a two-dimensional pseudo heterogeneous model of fixed bed reactor with suitable boundary conditions. State the assumptions clearly.				
	<u>OR</u>				
	The Van de Vusse reaction operated in a continuous stirred tank reactor is given as follows:				
	$A \xrightarrow{k_1} B \xrightarrow{k_2} C$				
	$2A \xrightarrow{k_3} D$				
	The component material balance equations are described as: $\frac{dC_A}{dt} = -k_1C_A - k_3C_A^2 + \frac{F}{V}(C_{Af} - C_A)$ $\frac{dC_B}{dt} = k_1C_A - k_2C_B + \frac{F}{V}C_B$	20	CO4		
	 (i) Compute the steady state values of C_A and C_B using the given data. (ii) Perform three iterations employing the fourth-order Runge–Kutta method for dynamic study using a step size of 1 for 0 ≤ t ≤ 2 h for a given data and plot the values of C_A and C_B as a function of time. 				
	Data: Reactor volume (V) = 2 lit Feed flow rate (F) = 50 lit/h Feed concentration of reactant $A(C_{Af}) = 10$ mol/lit Kinetic constant (k_1) = 50 h ⁻¹ Kinetic constant (k_2) = 100 h ⁻¹ Kinetic constant (k_3) = 10 lit/mol.h				