Name: Enrolm	ent No:			
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES			
	End Semester Examination, May 2023			
Programme Name:M Tech (Chemical Engineering)SemesterCourse Name:Advanced ThermodynamicsTime				
Course		x. Marks: 1	00	
	Page(s) : 2 ctions: Assume the values of parameters logically where necessary			
111511 ut	SECTION A			
S. No.		Marks	CO	
Q 1	Define Work thermodynamically. Provide a short discuss on the difference	nt		
	classifications of Work generally encountered in thermodynamic system.	4	CO1	
Q 2	Are 1 N and 1 kgf (kg-force) similar quantity? Provide the correct definition for eaterm.	ch 4	C01	
Q 3	Provide your argument why Gibbs Free Energy is considered as the generati function for various thermodynamic relationships. Explain with example.	ng 4	C01	
Q 4	Discuss concisely the difference between the Clausius-Clapeyron and modified Clausius-Clapeyron equation.			
Q 5	Define Corresponding States Principle and draw a representative plot.	4	CO2	
	SECTION B			
Q 6	Discuss the conditions for test for exactness used in partial differential equation w an example.	10	CO3	
Q 7	Apply the 1 st law of thermodynamics to derive the expression for energy and wor Or Derive the expression for vapor/liquid phase equilibrium of a pure component w mass transfer.	10	CO3	
Q 8	Air at 1 bar and 25°C enters a compressor at low velocity, discharges at 3 bar, and enters a nozzle in which it expands to a final velocity of 600 m/s at the init conditions of pressure and temperature. If the work of compression is 240 kJ j kilogram of air, how much heat must be removed during compression?	ial 10	CO4	
Q 9	Apply the 1^{st} law of thermodynamics formulation to derive the Maxwel relationship dh = Tds + vdP	l's 10	CO4	
	SECTION C			
Q 10	A liquid-vapor mixture contains n-hexane (component 1) and n-heptane (component 2) at 27°C. Estimate the composition of the liquid and vapor phases as a function total pressure if the phases behave as ideal solution. Plot the results in P-x-y diagra P1 and P2 are the vapor pressure of pure n-hexane and pure n-heptane respectively	of m.	CO5	
	lnP1 = 18.057 - (3837.4/T) lnP2 = 18.217 - (4231.0/T)	20		
	or			

Q 11	 Calculate the internal energy and enthalpy changes resulting if air changes from an initial state of 5°C and 10 bar, where its molar volume is 2.312 × 10⁻³ m³/mol, to a final state of 60°C and 1 bar. Assume also that air remains a gas for which PV/T is constant and that CV = 20.785 and CP = 29.100 J/mol K Acetic acid is esterified in the liquid phase with ethanol at 100°C and atmospheric pressure to produce ethyl acetate and water according to the reaction: CH3 COOH (1) + C2 H5 OH (1) → CH3 COOC2 H5(1) + H2O(1) If initially there is one mole each of acetic acid and ethanol, estimate the mole fraction of ethyl acetate in the reacting mixture at equilibrium. 				
	fraction of ethyl acetate	e in the reacting mixture at e	equilibrium.		
	fraction of ethyl acetate	e in the reacting mixture at e $\Delta H_{f_{298}}^{\circ}$	equilibrium. $\Delta G_{f_{298}}^{\circ}$	20	CO5
	fraction of ethyl acetate ethyl acetate (1)	e in the reacting mixture at e $\Delta H_{f_{298}}^{\circ}$ - 480,000	·		CO5
		$\Delta H^{\circ}_{f_{298}}$	$\Delta G^{\circ}_{f_{298}}$		CO5
	ethyl acetate (l)		$\Delta G_{f_{298}}^{\circ} = 332,200$		CO5
	ethyl acetate (l) acetic acid (l)	$\Delta H_{f_{298}}^{\circ}$ - 480,000 -484,500	$\Delta G_{f_{298}}^{\circ} = -332,200$ $-389,900$		CO5
	ethyl acetate (l) acetic acid (l) Ethanol (l)	ΔH ^o _{f298} - 480,000 -484,500 -277,690	$\Delta G_{f_{298}}^{\circ}$ - 332,200 -389,900 -174,780		CO5