Name: Enrolment No:			
\left.UPES End Semester Examination, May 2023 $\right)$			
SECTION A			
S. No.		Marks	CO
Q 1	An approximate value of π is given by 3.1428571 and true value is 3.1415926. Find the absolute and relative errors.	04	CO1
Q 2	Perform three iterations of Newton-Rapshon s method to find the root of the equation $f(x)=x^{4}-x-10=0$ and starting approximation as 1.5.	04	CO1
Q 3	Illustrate the MATLAB code for Newton Rapshon method, which could find the root of the equation $x^{4}-x-10=0$ and starting approximation as 1.5 .	04	$\mathrm{CO2}$
Q 4	Apply mid RK (second order) method to solve the initial value problem. $\frac{d y}{d x}=y x^{3}-1.5 y$ From $x=0$ to 2 where $y(0)=1$ by using $\mathrm{h}=1$.	04	CO1
Q 5	The following data represents the function $f(x)=e^{x}$ Estimate the value of $f(2.25)$ using Newton's forward difference interpolation and compare with the exact value.	04	CO1
SECTION B			
Q 6	Explain the bisection method for computing the roots of equation $\mathrm{f}(\mathrm{x})=$ 0 . Perform three iterations of the Bisection method in the interval $(1,2)$ to obtain roots of the equation $f(x)=x^{3}-x-1=0$.	10	CO1
Q 7	Solve the linear system $\mathrm{Ax}=\mathrm{b}$ using Gaussian elimination with pivoting $A=\left[\begin{array}{llllllll} 6 & 2 & 2 & 6 & 2 & 1 & 1 & 2 \end{array}\right] \text { and } b=\left[\begin{array}{lll} 0 & 5 & 0 \end{array}\right]$	10	CO 2
Q 8	Find the approximate value of	10	CO3

	$I=\int_{0}^{1} \frac{1}{1+x^{2}} d x$ Using Trapezoidal rule and Simpson's $3 / 8$ rule		
Q 9	Apply Euler method to approximate the solution of initial value problem and calculate $y(1.3)$ by using $\mathrm{h}=0.1$ $\frac{d y}{d x}+\frac{y}{x}=\frac{1}{x^{2}} \text { with } y(1)=1$	10	CO 2
SECTION-C			
Q 10	Three-dimension wave equation is defined in the form of linear homogenous differential equation as $\frac{\partial^{2} P}{\partial t^{2}}=C^{2} \nabla^{2} P$ Where ∇ is Laplace operator and C is the speed of wave, P is defined as pressure. The solution of given equation can be estimated using variable separable form with assuming the solution as $P=X Y Z T$ Where X, Y, Z and T are the function of x, y, z and t respectively. If the wave numbers in x, y and z is kx , ky and kz , then proved. $k_{x}^{2}+{k_{y}}^{2}+k_{z}^{2}=k^{2}$ $k=\omega / C$ with neglected $e^{-i \omega t}$ term. The solution of X, Y, and Z can be written in the form of cosine and sine terms with suitable constant terms. (Ex: - $X=A \cos (x)+$ $B \sin (x))$. Express solution of P in terms of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and t .	20	CO
Q 11	If the wave is propagated at rectangular duct (Size $L \times h \times w$), follow the Q 10 , which has rigid boundary at $y=\frac{-h}{2}, \frac{h}{2}$ and $y=\frac{-w}{2}, \frac{w}{2}$. The pressure input (Pin) is given at $\mathrm{x}=0$. Find out the final expression for pressure P inside in rectangular duct with assuming zero mode in y and z directions for one of the following conditions. The boundary condition at $\mathrm{x}=\mathrm{L}$ could be taken as rigid termination OR The boundary condition at $\mathrm{x}=\mathrm{L}$ could be taken as zero pressure For finding the constant value in the final expression use the Orthogonality Principle as $A=\frac{\int_{y 1}^{y 2}}{\int_{z 1}^{z 2}} \quad P \cos \left(k_{y} y\right) \cos \left(k_{z} z\right) d y d z$	20	$\mathrm{CO3}$

