Name:

Enrolment No:

UPES

End Semester Examination, May 2023

Course: High Performance and parallel Computing

Program: M.Tech CFD

Course Code: ASEG 7046

Instructions: Attempt all questions.

Semester: II Time : 03 hrs. Max. Marks: 100

	SECTION A		
S. No.		Marks	СО
Q 1	An approximate value of π is given by 3.1428571 and true value is 3.1415926. Find the absolute and relative errors.	04	CO1
Q 2	Perform three iterations of Newton-Rapshon s method to find the root of the equation $f(x) = x^4 - x - 10 = 0$ and starting approximation as 1.5.	04	CO1
Q 3	Illustrate the MATLAB code for Newton Rapshon method, which could find the root of the equation $x^4 - x - 10 = 0$ and starting approximation as 1.5.	04	CO2
Q 4	Apply mid RK (second order) method to solve the initial value problem. $\frac{dy}{dx} = yx^3 - 1.5y$ From $x = 0$ to 2 where $y(0) = 1$ by using h = 1.	04	CO1
Q 5	The following data represents the function $f(x) = e^x$ $\begin{array}{c} x & f(x) \\ 0 & 2.1783 \\ 1.5 & 4.4817 \\ 2.0 & 7.3891 \\ 2.5 & 12.1825 \end{array}$ Estimate the value of f(2.25) using Newton's forward difference interpolation and compare with the exact value.	04	CO1
	SECTION B		
Q 6	Explain the bisection method for computing the roots of equation $f(x) = 0$. Perform three iterations of the Bisection method in the interval (1,2) to obtain roots of the equation $f(x) = x^3 - x - 1 = 0$.	10	CO1
Q 7	Solve the linear system $Ax = b$ using Gaussian elimination with pivoting A = [6 2 2 6 2 1 1 2 - 1] and $b = [0 5 0]$	10	CO2
Q 8	Find the approximate value of	10	CO3

	a1 1				
	$I = \int_0^1 \frac{1}{1+x^2} dx$				
	Using Trapezoidal rule and Simpson's 3/8 rule				
Q 9	Apply Euler method to approximate the solution of initial value problem and calculate $y(1.3)$ by using h= 0.1 $\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2}$ with $y(1) = 1$	10	CO2		
SECTION-C					
Q 10	Three-dimension wave equation is defined in the form of linear homogenous differential equation as $\frac{\partial^2 P}{\partial t^2} = C^2 \nabla^2 P$ Where ∇ is Laplace operator and C is the speed of wave, P is defined as	20			
	pressure. The solution of given equation can be estimated using variable separable form with assuming the solution as P = XYZT		CO3		
	Where X, Y, Z and T are the function of x, y, z and t respectively. If the wave numbers in x, y and z is kx, ky and kz, then proved. $k_x^2 + k_y^2 + k_z^2 = k^2$				
	$k = \omega/C$ with neglected $e^{-i\omega t}$ term. The solution of X, Y, and Z can be written in the form of cosine and sine terms with suitable constant terms. (Ex: - $X = Acos(x) + Bsin(x)$). Express solution of P in terms of x, y, z and t.				
Q 11	If the wave is propagated at rectangular duct (Size $L \times h \times w$), follow the Q10, which has rigid boundary at $y = \frac{-h}{2}$, $\frac{h}{2}$ and $y = \frac{-w}{2}$, $\frac{w}{2}$. The pressure input (Pin) is given at x = 0. Find out the final expression for pressure P inside in rectangular duct with assuming zero mode in y and z directions for one of the following conditions.		CO3		
	The boundary condition at $x = L$ could be taken as rigid termination OR The boundary condition at $x = L$ could be taken as zero pressure	20			
	For finding the constant value in the final expression use the Orthogonality Principle as $A = \frac{\int_{y_1}^{y_2} \int_{z_1}^{z_2} P \cos(k_y y) \cos(k_z z) dy dz}{\int_{y_1}^{y_2} \int_{z_1}^{z_2} \cos^2(k_y y) \cos^2(k_z z) dy dz}$				