Name:

Enrolment No:

UPES

End Semester Examination, May 2023

Course: Modeling & Simulation

Semester: IV

Program: B.Tech CSE-IV-BData-BAO-CCVT-CSF-DevOps-OSSOS- AIML-IoT (Honors)

Time : 03 hrs.

Course Code: CSEG2037P

Max. Marks: 100

Instructions: All Questions are compulsory. Please attempt the questions in serial order. Kolmogorov Smirnov Table is given at the end.

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	List out the suitable examples for "When simulation is the appropriate tool" and "When simulation is the not appropriate."	4	C01
Q2	Define DFA. Design a DFA with proper description for $L(M) = \{x \mid x \text{ is } a \text{ string of (zero or more) a's, b's and c's such that x does not contain the substring aa \}.$	4	CO2
Q3	How you can use parallel and distributed simulation for your project. Explain with a case study.	4	CO3
Q4	The daily demand for a product is found to follow the distribution as Demand Probability 10 0.25 11 0.35 12 0.30 13 0.10 Determine the total demand for the next 10 days.	4	CO3
Q5	 How you can analyze the simulation results using a. Tables, b. Graphs, c. Multidimensional Visualization and d. MS Excel 	4	C01
	SECTION B (4Qx10M= 40 Marks)		
Q6	Draw and explain agent based simulation architectural diagram with its core components. Also list its advantages and disadvantages.	10	CO3
Q7	Differentiate horizontal and vertical partitioning with suitable examples.	10	CO3

Q8	List out the steps used in Kolmogorov Smirnov test. The sequence of numbers 0.54, 0.73, 0.98, 0.1 1, and 0.68 has been generated. Use the Kolmogornv-Smirnov test with a= 0.05 to learn whether the hypothesis that the numbers are uniformly distributed on the interval [0, 1] can be accepted/ rejected.				3+7	CO4	
Q9	How to perform the calibration and validation on simulation models. Justify the behavior of Face Validity, Model assumption and I/O transformation with suitable examples.					3+7	CO4
			SI	ECTION-C 20M=40 Mark	s)		
Q10	a) Derive	the random i		te for given pd			
	 f(x) = {λe^{-kx}, x≥0 0, x<0 b) Generate 3 Poisson variates with mean 0.2, and then get a sequence of 5 random numbers. OR a) List out the steps used in Kolmogorov Smirnov test. Use the mixed congruential method to generate a sequence of 5 two-digit random numbers with X₀ = 37, a=7, c =29, and m= 100. b) Write a computer program to generate exponential random variates for a given mean value. Generate 1000 values and verify the variates generated using chi-square test. 					10 + 10	CO4
Q11	take ca from 1 Table 1: Intera <i>Time between</i> <i>Arrivals (Minutes</i> 1 2 3 4 There are two	Ils and provi to 4 minutes rrival distribut Probability 0.25 0.40 0.20 0.15 technical sup d can provid times are sh	ide services. with distribution of calls Cumulative Probability 0.25 0.65 0.85 1.00 pport person e service fas own in Tabl	The time bet oution as shown s for technical s Random-Digit Assignment 01-25 26-65 66-85 86-00 s Able and Ba ster than Baker		15+5	CO2

(Minutes)	Probability	Cumulative Probability	Random-Digit Assignment				
3	0.35	0.35	01-35	1			
4	0.25	0.60	36-60				
5	0.20	0.80	61-80				
6	0.20	1.00	81-00				
A simplifying rule is that Able gets the call if both technical support people are idle. Able is more senior than Baker.Find how well the current arrangement is working to estimate the system measures of performance, a simulation of the first 100 caller is made.b) Use the linear congruential method to generate a sequence of							

Degrees of Freedom			
(N)	D _{0.10}	D _{6.05}	D _{0.01}
1	0.950	0.975	0.995 .
2	0.776	0.842	0.929
3	0.642	0.708	0.828
4	0.564	0.624	0.733
5	0.510	0.565	0.669
6	0.470	0.521	0.618
7	0.438	0.486	0.577
8	0.411	0.457	0.543
9	0.388	0.432	0.514
10	0.368	0.410	0.490
11	0.352	0.391	0.468
12	0.338	0.375	0.450
. 13	0.325	0.361	0.433
14	0.314	0.349	0.418
15	0.304	0.338	0.404
16	0.295	0.328	0.392
17	0.286	0.318	0.381
18	0.278	0.309	0.371
19	0.272	0.301	0.363
20	0.264	0.294	0.356
25	0.24	0.27	0.32
30	0.22	0.24	0.29
35	0.21	0.23	0.27
Over	1.22	1.36	1.63
35	N	<u> v</u>	√N

Table A.8 Kolmogorov-Smirnov Critical Values