

Q 8	Define a spline. Construct a Bezier curve with control points $\mathrm{A}(0,0), \mathrm{B}(1,2), \mathrm{C}(3$, $2)$, and $D(2,0)$. Generate five points of the curve.	2, 8	CO4
Q 9	Explain the Phong shading procedure to compute intensity at each pixel of a surface. Does mach-band effect appear in Phong shading? Justify.	8,2	CO5
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	(a) Define polyhedron. State the back-face culling logic to determine whether a polyhedron surface is facing back. Give a rational for the usage of back-face culling method. (b) Consider the two surfaces, ABCD and EFG, in the figure given below. Find the intensity at pixel $(3,4)$ using z-buffer visible surface detection algorithm. Intensities of the surfaces ABCD and EFG are 20 and 30 , respectively.	8,12	CO4
Q 11	(a) The vertices of a diamond shaped object are $\mathrm{A}(0,4), \mathrm{B}(-2,0), \mathrm{C}(0,-4)$, and $\mathrm{D}(2,0)$ (Fig. 1). Establish the transform to rotate this object about its center so that it appears as shown in Fig. 2. Find the vertices of the rotated diamond. Fig. 1 Fig. 2 (b) Determine the normalization transformation that maps vertices defined in world coordinate system (WCS) window \mathbf{W} to a display window \mathbf{D} in Device Coordinate System (DCS). Lower left and upper right corners of W and D are ($\mathbf{- 5},-\mathbf{5}$), (5, 5) and $\mathbf{(0 , 0}),(\mathbf{2 0 0}, \mathbf{2 0 0})$, respectively.	10, 10	CO 3
	OR		
	(a) Determine a composite transformation matrix to align a vector $\mathrm{V}=3 \mathbf{I}-2 \mathbf{J}+\mathbf{K}$ with vector $\mathbf{N}=\mathbf{I}+\mathbf{J}+\mathbf{K}$. (b) Show that the reflection about the line $y=x$ is attained by reversing coordinates. That is, $\mathrm{M}_{\mathrm{L}}(x, y)=(y, x)$.	12, 8	CO3

