Name :		W UPES					
Enrolmer	nt No. :	UNIVERSITY OF TOMO	RROW				
Program	ANN & Its Applications :MTech Code : AI7005P	UPES er Examination, May 2023 SECTION-A	Semester : 2^{nd} Time : 3 hour Max. Marks : 100				
	(5Q >	× 4M = 20 Marks)					
S. No.			Marks	СО			
Q.1		0.2 -0.2, Is this kernel symmetric or nmetric and non-symmetric ker-	4	CO3			
Q.2	What are vanishing gradient a in neural networks? Explain w	4	CO1				
Q.3	State the equations of contin and convolution. State how co lution based on your equation	4	CO1				
Q.4	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for a 3x3 image, 5x5 image matrix. Carry out the above image with 3x3 ker	matrix <i>I</i> , which looks like $I = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	4	CO2			
Q.5	What is the Stochastic Grad What is one epoch? What is b	4	CO2				

		S	ECTI	ON-	В				
	($4Q \times 1$	0M =	= 40	Mai	rks)			
S. No.								Marks	CO
Q.6	 (a) What are error/obj in Neural networks familer with. (b) Give the formulas formul	? State	thre	ee er	ror f	func		10 (7) (3)	CO4, CO6
Q.7	What is a convolution ne What is the receptive field ceptive field of a kernal o State the resulting featu kernel is applied to a feat	l of a co f size <i>k</i> re map	k onvol $\times k$. size	ution Wha e if 3	n kei t is 1 8 2 , 1	rnal l × 1 . × 1	? State the re- convolution?	10	CO5
Q.8	(a) State two 3×3 kern	als whi	ch w	vill c	omp	ute	he derivative	10	CO5
	of an image in x and	l y direo	ction	s.	-			(2)	
		10 10	11	11	12	12			
	(b) For an image $I =$	10 11	11	12	8	5	compute I_x		
		10 11	8	3	2	2			
		10 8	3	2	2	3			
1		10 4	2	2	2	3			
	and I_y using your ke	8 3 ernals st	2 ated	2 abo	2 ve.	2_		(8)	
Q.9	For the neural network stated below. Compute and state the number of trainable parameters in each layer and hence total number of parameters?						10	CO 6	
	<pre>def create_generator(): generator=Sequential() generator.add(Dense(units=256,input_dim=100)) generator.add(LeakyReLU(0.2))</pre>								
	<pre>generator.add(Dense(units=512)) generator.add(LeakyReLU(0.2))</pre>								
	generator.add(Dense(unit) generator.add(LeakyReLU(
	generator.add(Dense(unit:	s=3072, a	ictiva	tion=	'tanh	n'))			
	<pre>generator.compile(loss='l return generator g=create_generator()</pre>	binary_cr	ossen	tropy	', op	otimi	zer=adam_optimize	r())	

	$(2Q \times 20M = 40 \text{ Marks})$		
S. No.		Marks	CO
Q.10	 Principal Component Analysis (PCA) (a) Let X = N×4 be a data matrix. Give your interpretation of the numbers of data samples in the matrix and the length of the feature vectors for each data samples. 	20	CO4
	(b) What is data covariance matrix, give an expression for it. What will be the size of the data covariance matrix for the above data matrix?	(4)	
	(c) Carry out principal component analysis for data whose co- $\begin{bmatrix} 6 & 10 & 6 \end{bmatrix}$		
	variance matrix is 0 8 12 How many principal com- 0 0 2		
	ponents and eigen-values are there for this matrix? Cleary state the PCs and their correponding variances.	(10)	
	(d) State four uses of PCA.	(4)	
Q.11	 Radial Basis Functions We have a problem of multivariate non-linear regression. There are 100 input features for the problem and we need to predict the output variable. We have to construct a RBF network for this problem. (a) What will be the number of nodes in the input and output 	20	CO3
	layers?(b) Let there be 150 neurons in the hidden layers. Construct human understandable computational graph representation of this RBF network.	(2)	
	(c) Compute the total number of trainable parameters for this RBF. Please do show the intermediate steps for your computation for each layer.	(4)	
	(d) What will be your choice of activation functions in the hid- den and output layers of your RBF? Give reasons for your		
	(e) A Gaussian function is defined as $G(\mathbf{x} - \mathbf{t_i} = exp(- \mathbf{x} - \mathbf{t_i} ^2)), i = 1, 2$ where the centers $\mathbf{t_1}$ and $\mathbf{t_2}$ are $\mathbf{t_1} = [1, 0]^T$ and $\mathbf{t_2} = [0, 1]^T$ Compute the values of the $\begin{bmatrix} 0, & 0 \end{bmatrix}^T$	(5)	
	function <i>G</i> for $x = \begin{bmatrix} 0, & 0 \\ 1, & 0 \\ 0, & 1 \\ 1, & 1 \end{bmatrix}^{\hat{T}}$	(5)	