Name: Enrolment No:			
Course Program Course Instructi		Marks:	
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Compare between the hard computing and soft computing.	4	CO1
Q 2	Discuss the current trends in soft computing in brief.	4	CO1
Q 3	Justify why XOR is non-linear and AND and OR gates are linearly separable.	4	CO2
Q 4	Differentiate between auto, hetero, and bidirectional associative memories.	4	CO 3
Q 5	List down at least four major applications of genetic algorithm with a brief description of each of them.	4	$\mathrm{CO5}$
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	Discuss the various ANN architectures with appropriate block diagrams.	10	CO 2
Q 7	Use Madaline network to train XOR function with bipolar inputs and targets. Perform at least 2 epochs of training. Include all the necessary metrics like inputs, expected and observed outputs, change in weights and bias, updated weights, and errors explicitly in the tabular simulation. Assume all the parameters required for training the network on your own.	10	CO 3
Q 8	Find the new weights, using back-propagation network for the following network. The network is presented with the input pattern $[0,1]$ and the target output is 1 . Use a learning rate $\alpha=0.25$ and binary sigmoidal activation function.	10	CO 3

