Name:

Enrolment No:

UPES

End Semester Examination, May 2023

Course: Cryptography and Cryptanalysis Program: M.Tech, CSE Course Code: CSCS7005P Semester: II Time: 03 hrs. Max. Marks: 100

Instructions: Attempt all the questions. Q. No. 9 and 11 have internal choices. Calculators are allowed.

SECTION A (5Qx4M=20Marks)				
S. N.		Marks	СО	
Q 1	 (a) Identify the elements in the set Z₅={0, 1, 2, 3, 4} are not members of the set Z₅[*]? (b) Result of -16 mod 13 = 	4	CO1	
Q 2	 (a) In GF(7), the result of 5 × 4 = and 6 ÷ 5 = (b) Name the three common algebraic structures in Cryptography. 	4	CO1	
Q 3	(a) Write two properties of the Feistel block cipher structure.(b) Define confusion and diffusion in the context of block ciphers.	4	CO2	
Q 4	(a) $5^{-1} \mod 7 = $ (b) The number of elements in Z_{15}^* is	4	CO3	
Q 5	(a) If there are <i>n</i> number of communicators present in a system then number of symmetric keys would be required and number of asymmetric keys would be needed.	4	CO4	
	(b) The number of inputs to a MAC function are			
	SECTION B (4Qx10M= 40 Marks)			
Q 6	Explain Cipher Feedback (CFB) mode of block cipher operation. Compare CFB and Counter (CTR) modes of block cipher operation on:	10		
	(i) Parallel processing capability			
	(ii) Preprocessing of the encryption part		CO1	
	(iii) Error propagation			
	(iv) Usage as a stream cipher			

Q 7	Multiply $x^3 + x^2 + x + 1$ by $x^3 + 1$. Use $x^4 + x^3 + 1$ as modulus.	10	CO2
Q 8	List and brief the requirements of a hash function. Determine the number of rounds to break a MAC key using Brute Force attack, if the key size is 80 bits and the MAC is 32 bits long.	10	CO3
Q 9	Discuss CMAC with neat diagram.	10	CO4
	OR		
	Explain Digital Signature Standard (DSS), clearly stating the procedures of key generation, signing and verification.	10	CO4
	SECTION-C (2Qx20M=40 Marks)		
Q 10	(a) Use fast exponentiation algorithm to compute $15^{89} \mod 24$.	10, 10	CO2
	 (b) Use Extended Euclidean algorithm to find the multiplicative inverse of 15 in Z₂₆. 		
Q 11	(a) Explain Modification Detection Code (MDC) and Message Authentication Code (MAC). Discuss the difference between the two.	10, 10	CO3
	(b) The procedure to generate a simple hash function based on bit by bit exclusive-OR (XOR) defined as:		
	Divide the input message into equal sized blocks of <i>n</i> -bits each.		
	Initially set <i>n</i> -bit hash value to zero.		
	Process each successive <i>n</i> -bit block as follows:		
	 Rotate the current hash value to the left (circular) by one bit. XOR the block into the hash value 		
	Find an 8-bit hash code using this algorithm if the message obtained in the Hex format is 10 2F 1B 08. Justify whether the hash code so generated is preimage resistant.		
	OR		
	(a) Define KDC. Discuss a protocol that involves KDC for the distribution of session keys within the communicating parties.	6, 6, 8	
	(b) Explain the Diffie-Hellman key exchange procedure.		CO3
	(c) In a Diffie-Hellman system, prime number <i>p</i> and its primitive root <i>g</i> are selected as 23 and 7 respectively. Further, Alice and Bob decide their private keys as 3 and 6, respectively.		
	(i) Find the secret shared key.		
	(ii) Show that 7 is primitive root of 23.		