

Q 7	Multiply $x^{3}+x^{2}+x+1$ by $x^{3}+1$. Use $x^{4}+x^{3}+1$ as modulus.	10	CO2
Q 8	List and brief the requirements of a hash function. Determine the number of rounds to break a MAC key using Brute Force attack, if the key size is 80 bits and the MAC is 32 bits long.	10	CO 3
Q 9	Discuss CMAC with neat diagram.	10	CO4
	OR		
	Explain Digital Signature Standard (DSS), clearly stating the procedures of key generation, signing and verification.	10	CO4
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	(a) Use fast exponentiation algorithm to compute $15^{89} \bmod 24$. (b) Use Extended Euclidean algorithm to find the multiplicative inverse of 15 in Z_{26}.	10, 10	CO 2
Q 11	(a) Explain Modification Detection Code (MDC) and Message Authentication Code (MAC). Discuss the difference between the two. (b) The procedure to generate a simple hash function based on bit by bit exclusiveOR (XOR) defined as: Divide the input message into equal sized blocks of n-bits each. Initially set n-bit hash value to zero. Process each successive n-bit block as follows: - Rotate the current hash value to the left (circular) by one bit. - XOR the block into the hash value Find an 8-bit hash code using this algorithm if the message obtained in the Hex format is 102 F 1 B 08 . Justify whether the hash code so generated is preimage resistant.	10, 10	CO 3
	OR		
	(a) Define KDC. Discuss a protocol that involves KDC for the distribution of session keys within the communicating parties. (b) Explain the Diffie-Hellman key exchange procedure. (c) In a Diffie-Hellman system, prime number p and its primitive root g are selected as 23 and 7 respectively. Further, Alice and Bob decide their private keys as 3 and 6 , respectively. (i) Find the secret shared key. (ii) Show that 7 is primitive root of 23 .	6, 6, 8	CO 3

