Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023			
Course: Digital Logic and Computer Organization Semester: II Program: B.Tech CSE (All Batches) Time: 03 hrs. Course Code: CSEG 1015 Max. Marks: 100 Instructions: There are three sections. Attempt all questions.			
1. Each Question will carry 4 Marks			
S. No.		Marks	CO
Q1	What are ripple counters? Why are they called so?	3+1	CO4
Q2	Convert the following numbers to their decimal equivalents: a) $\mathrm{F} 1792_{16}$ b) 56671_{8}	2x2	CO1
Q3	Realise AND and OR operations through NAND and NOR gates.	4	CO 2
Q4	Write a short note on TTL.	4	CO5
Q5	What are the different operations possible with JK Flip Flop? Support your answer with relevant state table.	4	CO 4
1. Each question will carry 10 marks. SECTION B			
Q6	Simplify the following Boolean functions with the help of K-Map: a) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\pi(0,3,6,7)$ b) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\pi(3,5,7,8,10,11,12,13)$	4+6	CO 2
Q7	Simplify the following function using Quine Mc'Clusky method: $F(A, B, C, D)=\sum m(0,1,2,4,6,8,9,11,13,15)$.	10	CO 2
Q8	Design a 4 bit BCD adder and explain its working logic starting from truth table. OR (a) Design a Decimal to BCD encoder with truth table and final logic diagram. (b) Design a 4X1 multiplexer with truth table and logic diagram.	$\begin{gathered} 10 \\ \text { OR } \\ 5+5 \end{gathered}$	CO 3

Q9	Design a 4 bit odd counter with T flip flops and give the relevant timing diagram.	$\mathbf{1 0}$	CO4

Section C

1. Each question will carry 20 marks

\(\left.$$
\begin{array}{|c|l|c|c|}\hline \text { Q10 } & \begin{array}{l}\text { What are the four different types of shift registers? Give a very brief description of } \\
\text { each with respective circuit diagrams. }\end{array}
$$ \& \mathbf{2 0} \& CO4

\hline Q11 \& \begin{array}{l}What is a 555 timer? Why is it called so?

Give a detailed operational description of astable multivibrator using LM555 timer

with necessary diagrams, waveforms and equations.\end{array} \& \mathbf{3 + 2 + 1 5} \& OR\end{array}\right\}\)| CO6 |
| :---: |
| Write short notes on: |
| RAMs, ROM, EPROM, and EEPROM |

