
Name: Enrolm	ent No:	S		
	UPES			
	End Semester Examination, May 2023			
	: Time Series Econometrics	Semester: VI	emester: VI ime : 03 hrs. Iax. Marks: 100	
Course				
	ctions: Answer the questions as per the serial no. of the question and cle r answer sheet.	arly write Section	on Name	
	SECTION A			
G M	10Qx2M=20Marks			
S. No.		Marks	CO	
Q 1	Consider the following picture and suggest the model from the followin list that best characterises the process:	2	CO1	
Q 2 Q 3	 Which of the following models can be estimated using ordinary least squares? (i) An AR(1) (ii) An ARMA(2,0) (iii) An MA(1) (iv) An ARMA(1,1). If a series, y, is described as 'mean-reverting', which model from the 	2	CO1	
y <i>y</i>	 following list is likely to produce the best long-term forecasts for that series y? (a) A random walk (b) The long term mean of the series 	2		

	(c) A model from the ARMA family(d) A random walk with drift.		
Q 4	Consider the following AR(2) model. What is the optimal 2-step-ahead forecast for y if all information available is up to and including time t, if the values of y at time t, t-1 and t-2 are -0.3, 0.4 and -0.1, respectively, and the value of u at time t-1 is 0.3? $y_t = -0.1 + 0.75y_{t-1} - 0.125y_{t-2} + u_t$ (a) -0.1 (b) 0.27 (c) -0.34	2	CO1
	(d) 0.30.		
Q 5	 Which of these is NOT a consequence of working with non-stationarity variables? (a) Shocks will be persistent (b) Unjustifiably high R² (c) The standard assumptions for asymptotic analysis will be invalid (d) It leads to data mining. 	2	CO1
Q 6	Three characteristics of a weakly stationary process are (I) $E(y_t) = \mu$ (II) $E(y_t - \mu)(y_t - \mu) = \sigma^2 < \infty$ (III) $E(y_{t1} - \mu)(y_{t2} - \mu) = \gamma_{t2-t1} \forall t_1, t_2$ What do the mathematical expressions I, II, and III imply? (a) Constant variance, constant mean, and constant autocovariance, respectively (b) Constant autocovariance structure, constant mean, and constant variance, respectively (c) Constant mean, constant autocorrelation, and constant autocovariance, respectively (d)Constant mean, constant variance, and constant autocovariance structure, respectively.	2	CO1

	Use the following to answer Questions 8 and 9. Suppose that you have estimated the first five autocorrelation coefficients using a series of length 81 observations and found them to be		
	Lag 1 2 3 4 5 Autocorrelation coefficient 0.412 -0.205 -0.332 0.005 0.54		
Q 8	Which autocorrelation coefficients are significantly different from zero at the 5% level?(a) The first and fifth autocorrelation coefficient (b) The first, second, third, and fifth autocorrelation coefficient (c) The first, third, and fifth autocorrelation coefficient (d) The second and fourth autocorrelation coefficient.	2	CO1
Q 9	What is the appropriate Box–Pierce test statistic? (a) 4.78 (b)47.83 (c) 59.05 (d) 5.91	2	CO1
Q 10	Consider the following MA(2) process $y_t = u_t + \theta_1 u_{t-1} + \theta_2 u_{t-2}$ where the errors follow a standard normal distribution. What is the variance of y_t ? (a) $E\left[u_t^2 + \theta_1^2 u_{t-1}^2 + \theta_2^2 u_{t-2}^2\right]$ (b) $\sigma^2 + \theta_1^2 \sigma^2 + \theta_2^2 \sigma^2$ (c) $1 + \theta_1^2 + \theta_2^2$ (d) All of the above	2	CO1
	SECTION B 4Qx5M= 20 Marks		
Q 11	a) Using the sample ACF plots below, identify which one of the series is white noise.	5	CO2

Q 14	B] Figure 4 shows the ACF of two time-series. Argue which one (Series 1 and Series 2) is stationary and which one is not. Explain your result.		
	Series X1 Series X2		
	$\begin{bmatrix} & 0 & 0 & 0 & 0 & 0 \\ & 0 & 0 & 0 & 0 &$	5	CO2
	(a) Series 1 (b) Series 2		
	Figure 4: ACF Plots		
	SECTION-C 3Qx10M=30 Marks		
Q 15	You obtain the following sample autocorrelations and partial autocorrelations		
	for a sample of 100 observations from actual data:		
	Lag 1 2 3 4 5 6 7 8		
	acf 0.420 0.104 0.032 -0.206 -0.138 0.042 -0.018 0.074	10	602
	pacf 0.420 0.381 0.268 0.199 0.205 0.101 0.096 0.082	10	CO3
	(a)Can you identify the most appropriate time-series process for this data? (b)Use the Ljung–Box test to determine whether the first three autocorrelation coefficients taken together are jointly significantly different from zero.		
Q 16	Consider the following stationary ARMA(1,1) process:		
	$y_t = \mu + \phi_1 y_{t-1} + u_t + \theta_1 u_{t-1}$		
	where u_t is a white noise process with zero mean and variance σ_u^2 .		
	*	10	CO2
	(a)Calculate the (unconditional) mean of y_t .	10	CO3
	For the remainder of the question, set $u = 0$ for simplicity.		
	(b)Calculate the (unconditional) variance of y_t .		
	(c)Derive the autocorrelation function for y_t .		
Q 17	Suppose that a researcher had estimated the first 5 autocorrelation coefficients using a series of length 100 observations, and found them to be (from 1 to 5): 0.207, -0.013, 0.086, 0.005, -0.022. Test each of the individual coefficient for significance, and use both the Box- Pierce and Ljung-Box tests to establish whether they are jointly significant.	10	СО3
	SECTION-D		
<u> </u>	2Qx15M= 30 Marks		

Q 18	 Consider the following simple AR(1) model y_t = μ + φ₁y_{t-1} + u_t where u_t is a white noise process with zero mean and variance σ²_u. i. Calculate the (unconditional) mean of y_t. For the remainder of the question, set μ = 0 for simplicity. ii. Calculate the (unconditional) variance of y_t. iii. Derive the autocorrelation function for y_t. 	15	CO4
Q 19	You are asked to do the forecasting GDP data for Indian Economy. Write in detail how you will forecast the GDP data.	15	CO4