Name: Enrolment No:	FUPгS

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May-23

Course: Mathematical Economics-II
Program: BA, Economics (Hons.)
Course code: ECON1017
Max. Marks: 100

SECTION A

1. Each Question will carry 2 Marks

		CO
Q1	Find the following:	
	a. $\int 12 e^{x} d x$	
	b. $\int 6 e^{-(2 x+7)} d x$	CO1
	c. $\int\left(3 e^{x}+\frac{4}{x}\right) d x$	
	d. $\int\left(5 e^{x}+\frac{4}{x^{2}}\right) d x$	
	e. $\int x e^{x^{2}+9} d x$	

SECTION B

1. Each question will carry 5 marks
2. Instruction: Write short / brief notes

Q2.	Find $\int_{2}^{5} \frac{3 x}{(x+1)^{2}}$ using the method of integration by parts.	CO2
Q3.	Use the formula for a general solution to solve the following equations: a. $\frac{d y}{d t}+5 y=0$ b. $\frac{d y}{d t}=3 y$	CO2
Q4.	Sole the first-order difference equation. $y_{t+1}-5 y_{t}=1 \quad\left(y_{0}=\frac{7}{4}\right)$	$\mathrm{CO2}$
Q5.	The rate of net Investment is $I=60 t^{1 / 3}$ and capital stock at $\mathrm{t}=0$ is 85 . Find K?	CO2
	Question carries 10 Marks. SECTION-C	

Q 6.	Given $\frac{d C}{d Y}=0.6+0.1 / \sqrt[3]{Y}=M P C$ and $C=45$ when $Y=0$. Find the Consumption Function?	$\mathrm{CO3}$
Q7.	Given the data below, $C_{t}=90+0.8 Y_{t-1} \quad I_{t}=50 \quad Y_{0}=1200$ Find, a. The time path of national income Y_{t} b. Comment on the stability of the time path	$\mathrm{CO3}$
Q8.	For the following data given below, determine (a) the market price P_{t} in any time period, (b) the equilibrium price P_{e}, and (c) the stability of the time path. $Q_{d t}=180-0.75 P_{t} \quad Q_{s t}=-30+0.3 P_{t-1} \quad P_{0}=220$	$\mathrm{CO3}$

SECTION-D

1. Each Question carries 15 Marks.

2. Instruction: Write long answer		
Q9.	Given, $A=\left[\begin{array}{lll}0.2 & 0.3 & 0.2 \\ 0.4 & 0.1 & 0.3 \\ 0.3 & 0.5 & 0.2\end{array}\right]$ and final demands are $\left[\begin{array}{l}F_{1} \\ F_{2} \\ F_{3}\end{array}\right]=\left[\begin{array}{l}150 \\ 200 \\ 210\end{array}\right]$. Find the output levels consistent with the model?	$\mathrm{CO4}$
Q10.	What is a linear programming problem? Solve graphically the linear programming problem stated below: $\text { Maximize } U=50 x_{1}+60 x_{2}$ Subject to: $\begin{gathered} 2 x_{1}+x_{2} \leq 30 \\ 3 x_{1}+4 x_{2} \leq 50 \\ 4 x_{1}+7 x_{2} \leq 80 \\ \hline \end{gathered}$	$\mathrm{CO4}$

