Name:
Enrolment No:

# UNIVERSITY OF PETROLEUM \& ENERGY STUDIES 

## End Semester Examination - May, 2023

Program: MBA ALL
Subject/Course: Operations Research
Course Code: DSQT7002

Semester: II
Max. Marks: 100
Duration: 3 Hours

| $\begin{gathered} \text { Q. } \\ \text { No. } \end{gathered}$ | Section A | 20 | COs |
| :---: | :---: | :---: | :---: |
| Q1 | The strategy that puts the player in the most preferred position irrespective of the strategy of his opponent is called .... <br> a. Pure strategy <br> b. Mixed strategy <br> c. Optimal strategy <br> d. strategy | 2 | CO 1 |
| Q2 | Suggest a suitable OR model for deciding the recruitment policy of salesman in a state on the expansion of business. <br> a. Allocation model <br> b. Travelling salesman model <br> c. Inventory model <br> d. Replacement model | 2 | CO1 |
| Q3 | Which of these statements about the stepping-stone method is best? <br> a. A dummy source and destination must be added if the number of rows plus columns minus 1 is not equal to the number of filled squares. <br> b. Only squares containing assigned shipments can be used to trace a path back to an empty square. <br> c. An improvement index that is a net positive means that the initial solution can be improved. <br> d. Only empty squares can be used to trace a path back to a square containing an assigned shipment | 2 | CO1 |
| Q4 | The concept of finding the minimum number of lines crossing all zero is used in <br> a. Steppingstone method <br> b. Hungarian method <br> c. Vogel's method <br> d. MODI method | 2 | CO1 |


| Q5 | Before formulating a formal LPP model, it is better to <br> a. Express each constrain in words <br> b. Express the objective function in words <br> c. Verbally identify decision variables <br> d. All of the above | 2 | CO1 |
| :---: | :---: | :---: | :---: |
| Q6 | In the assignment problem, if a row or a column has all zeros, then: <br> a. The corresponding task or resource cannot be assigned <br> b. The corresponding task or resource must be assigned <br> c. The corresponding task or resource can be assigned with a penalty cost <br> d. None of the above | 2 | CO1 |
| Q7 | The simplex method is used to solve: <br> a. Linear programming problems <br> b. Non-linear programming problems <br> c. Integer programming problems <br> d. Quadratic programming problems | 2 | CO1 |
| Q8 | The objective of Safety Stock is: <br> a. To prevent stockouts due to unexpected increase in demand <br> b. To reduce holding cost <br> c. To reduce ordering cost <br> d. None of the above | 2 | CO1 |
| Q9 | In the graphical method, the feasible region is: <br> a. The area enclosed by the constraints <br> b. The area outside the constraints <br> c. The area where the objective function is maximized <br> d. None of the above | 2 | CO1 |
| Q10 | Operations research is: <br> a. The application of mathematical methods to solve real-world problems <br> b. The study of operations and supply chain management <br> c. The study of production processes in a factory | 2 | CO1 |


|  | d. The study of logistics and transportation |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Section-B |  |  |  |  |  | 20 |  |
| Q11 | Discuss main issues involved in LPP. |  |  |  |  |  | 5 | CO 2 |
| Q12 | Explain any two of the following: <br> a. Feasible solution <br> b. Optimum solution <br> c. Simulation method <br> d. Pure strategy of a player |  |  |  |  |  | 5 | CO 2 |
| Q13 | Three grades of coal A, B \& C contain ash and phosphorus as impurities. In a particular industrial process, a fuel obtained by blending the above grades containing not more than $25 \%$ ash and $0.03 \%$ phosphorus is required. The maximum demand of the fuel is 100 tons. Percentage impurities and costs of the various grades of coal are shown below. Assuming that there is an unlimited supply of each grade of coal and there is no loss in blending, formulate the blending problem to LPP. |  |  |  |  |  | 5 | CO 2 |
| Q14 | List any three operation research techniques and state in what conditions they can be used. |  |  |  |  |  | 5 | CO 3 |
| $\begin{array}{\|l\|} \hline \text { Q. } \\ \text { No. } \end{array}$ | Section-C <br> (Attempt any three) |  |  |  |  |  | 30 |  |
| Q15 | The captain of a cricket team has to allot five middle batting positions to five batsmen. The average runs scored by each batsman at these positions are as below: |  |  |  |  |  | 10 | CO 3 |
|  | Batsman |  |  |  |  |  |  |  |
|  |  | I | II | III | IV | V |  |  |
|  | P | 40 | 40 | 35 | 25 | 50 |  |  |
|  | Q | 42 | 30 | 16 | 25 | 27 |  |  |
|  | R | 50 | 48 | 40 | 60 | 50 |  |  |


|  | S | 20 |  | 19 | 20 |  | 18 |  | 25 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | T <br> Find the assignm | 58 <br> of bat | an to | $60$ <br> tions w | 59 |  | $55$ <br> axim | numb | 53 <br> of runs. |  |  |
| Q16 | Player A can choo only. The rules of strategies: <br> What strategies sho | his stra game <br> ed | ies fro e that  $\square$ $\qquad$ $\square$ $\square$ <br> plays i | A, B, C paymen <br> der to g | nly, whil should b <br> Paymen <br> Player <br> Player B <br> Player <br> Player B <br> Player <br> Player <br> the optin | player made in to be m pays Re pays Rs pays Rs pays Rs pays Rs pays Rs | can cho ccordan <br> de <br> to play <br> to playe <br> of the | from with th | set (P, Q) lection of $\qquad$ | 10 | CO 3 |
| Q17 | a. What is a <br> b. The main $₹ 7000$ is <br> Year <br> Maintenance <br> $\operatorname{cost}(₹)$ <br> Resale cost (₹) | eplacem <br> nance <br> 900 <br> 4000 | mode <br> and re <br> 2 <br> 1200 <br> 2000 | operat <br> 3 <br> 1600 <br> 1200 | resea <br> r year o <br> 4 <br> 2100 <br> 600 | a mach5 <br> 2800 <br> 500,$l$ | whos <br> 6 <br> 3700 <br> 400 |  <br> 7 <br> 4700 <br> 400 | ice is <br> 8 <br> 5900 <br> 400 |  |  |
| Q18 | Dr. Thomas has b to decide how larg home and a num following table: <br> a. What is th | en think the nu er of $m$ <br> Maxim | about <br> g hom keting <br> Mark $\qquad$ $\qquad$ $\qquad$ <br> decisi | arting h <br> Then o tors. <br> 000’) | own ind returns er caref <br> Fair ma <br> 20 <br> 35 <br> 35 <br> 25 | pendent <br> ill dep <br> analy <br> ket (₹ | ursing <br> ds on b Dr. T | me. Th <br> the siz mas de <br> mark | roblem is f nursing oped the <br> ₹ 000’) | 10 | CO3 |


|  | b. What is the maximin decision? <br> c. What is the Laplace decision? <br> d. What is the Hurwitz decision (take $\alpha=0.7$ )? |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| $\mathrm{Q} .$ <br> No. | Section-D (Attempt any two) | 30 |  |
| Q19 | Use simplex method to $\operatorname{minimize}, Z=x_{1}-3 x_{2}+2 x_{3}$ <br> Subject to constraints: $\begin{gathered} 3 x_{1}-x_{2}+2 x_{3} \leq 7 \\ -2 x_{1}+4 x_{2} \leq 12 \\ -4 x_{1}+3 x_{2}+8 x_{3} \leq 10 \\ x_{1}, x_{2}, x_{3} \geq 0 \end{gathered}$ | 15 | CO 4 |
| Q20 | A transportation problem with following costs of transportation from 3 supply location to 4 demand location as: <br> Suppose the following allocations are being made as initial feasible solution: $x_{11}=1, x_{12}=$ $5, x_{24}=1, x_{31}=6, x_{33}=3, x_{34}=1$. Test the optimality of the given solution using MODI method. | 15 | CO 4 |
| Q21 | A manufacturer is to make a choice between two machines, say, A and B, which are priced at Rs. 50,000 and Rs. 25,000 respectively. The annual running costs for machine A are Rs. 8,000 for the first five years after which the costs increase per year by Rs. 2,000. Machine B, which has the same capacity as machine A, will have a running cost of Rs. 12,000 for the first six years, and after that would increase by Rs. 2,000 per year. If the money is worth $10 \%$ per year, which machine should be purchased? Assume that the scrap value of the two machines is nil. |  |  |

