Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2023

Course: Operations Management Program: MBA(PM) Course Code: LSCM 7001 Max. Marks: 100

Semester: II Time : 03 hrs.

Instructions:

SECTION A 10Qx2M=20Marks				
S. No.	Attempt all questions in this section	Marks	СО	
Q 1	Explain the following and fill in the blank			
(a)	Productivity increases when:			
	a) inputs increase while outputs remain the same.			
	b) inputs decrease while outputs remain the same.	2	CO1	
	c) outputs decrease while inputs remain the same.			
	d) inputs and outputs increase proportionately.			
	e) inputs increase at the same rate as outputs.			
(b)	Multifactor productivity:			
	a) remains constant.			
	b) is never constant.	2	CO1	
	c) usually uses substitutes as common variables for the factors of production.			
	d) seldom uses labor as a factor.			
	e) always uses management as a factor.			
(c)	Decision trees use:			
	a) probabilities.			
	b) payoffs.	2	CO1	
	c) logic.			
	d) options.			
	e) all of the above.			
(d)	The process of identifying other organizations that are best at some facet of your			
	operations and then modeling your organization after them is known as:			
	a) continuous improvement.	2	CO1	
	b) employee empowerment.		COI	
	c) benchmarking.			
	d) copycatting.			
	e) patent infringement.			

(e)	The break-even point is:		
	a) adding processes to meet the point of changing product demands.		
	b) improving processes to increase throughput.	2	CO1
	c) the point in dollars or units at which cost equals revenue.		
	d) adding or removing capacity to meet demand.		
	e) the total cost of a process alternative.		
(f)	Effective capacity is:		
	a) the capacity a firm expects to achieve, given the current operating constraints.	_	
	b) the percentage of design capacity actually achieved.	2	CO1
	c) the percentage of capacity actually achieved.		
	d) actual output.		
()	e) efficiency.		
(g)	Evaluating location alternatives by comparing their composite (weighted- average) scores involves		
	a) factor-rating analysis.	•	601
	b) cost–volume analysis.	2	CO1
	c) transportation model analysis.		
	d) linear regression analysis.		
	e) crossover analysis.		
(h)	Scheduling refers to specifying		
	A. The sequence that jobs must be completed	2	CO1
	B. The due date for each job	4	COI
	C. The start and completion times of jobs		
<i></i>	D. The makespan of each job		
(i)	The Shortest Processing Time (SPT) rule		
	A. Ensures that due dates are met		
	B. Maximizes average flow-time	2	CO1
	C. Minimizes resource utilization		
	D. Minimizes work in process inventory		
(j)	A requirement of Johnson's two-resource sequencing rule is		
	A. All jobs must begin at the same time	-	
	B. Jobs must be processed through each work center in the same job sequence	2	CO1
	C. Only two jobs can be processed at a time through each work center		
	D. Total processing time must be minimized		
	SECTION B		
	4Qx5M= 20 Marks		
	Attempt all questions, some questions has option, kindly attempt any one from the		
	option		

Q2	The Circuit Town store's most popular item is six-packs of 9-volt batteries. About		
Q2	150 packs are sold per day, following a normal distribution with a standard deviation of 16 packs. Batteries are ordered from an out-of-state distributor; lead time is normally distributed with an average of 5 days and a standard deviation of 1 day. To maintain a 95% service level, what ROP is appropriate?	5	CO2
Q3	What is the overall reliability of the system?		
	.95	5	CO2
Q4	Esmail Mohebbi, owner of European Ignitions Manufacturing, needs to expand his capacity. He is considering three locations—Athens, Brussels, and Lisbon— for a new plant. The company wishes to find the most economical location for an expected volume of 2,000 units per year. Mohebbi conducts locational cost– volume analysis, given that fixed costs per year at the sites are \$30,000, \$60,000, and \$110,000, respectively; and variable costs are \$75 per unit, \$45 per unit, and \$25 per unit, respectively. The expected selling price of each ignition system produced is \$120.	5	CO2
Q5	Discuss the various factors considered for thermal power plant and wind farm location?	5	CO2
	SECTION-C		
0	3Qx10M=30 Marks Attempt all questions, some questions has option, kindly attempt any one from the		
Q	option		
Q6	 CD players are produced on an automated assembly line process. The standard cost of a CD player is \$150 per unit (labor, \$30; materials, \$70; and overhead, \$50). The sales price is \$300 per unit. A. To achieve a 10 percent TFP improvement by reducing material costs only, by what <u>percent</u> must these costs be reduced. B. To achieve a 10 percent TFP improvement by reducing labor costs only, by what <u>percent</u> must these costs be reduced. C. To achieve a 10 percent MFP improvement by reducing Overhead costs only, by what <u>percent</u> must these costs be reduced. 	10	CO3
Q7	Generate a production plan with varying inventory levels using the given information Opening inventory: 500 units Inventory holding cost: Rs 40 Worker productivity: 20 units per day Worker strength: 10 Shortage cost: Rs 30 per unitJuneJulyAugustSeptember	10	CO3

1	Demand	5000	4600	5200	4800		
	Working	23	24	22	23		
	days						
Q8	A company is s	setting up an ass	embly line to pr	oduce 192 units	per 8-hour shift.		
	The following	The following table identifies the work elements, times, and immediate					
	predecessors:						
	Work Ele	ement	Time(sec)		nmediate		
	A		40		edecessor None		
	B		80		A		
	C		30		D, E, F		
	D		25	·	B		
	E		20		B	10	CO3
	F		15		В	10	CO3
	G		120		А		
	Н		145		G		
	I		130		Н		
1	J		115		C,I		
	workstation 4. Compute the	efficiency	SECTIO	N-D			
			2Qx15M=3			1	
	Attempt all que option	stions, some que	-		any one from the		
Q9	option		stions has option	, kindly attempt	any one from the		
Q9	option King electronic	s wants to launc	stions has option	, kindly attempt	-		
Q9	option King electronic Design A:		stions has option h new line of mo 50 good monitor	, kindly attempt onitors. It has tw s per 100 is .9	-		
Q9	option King electronic Design A: Probability to y	s wants to launce bability to yield 6	stions has option h new line of mo 50 good monitor nitors per 100 is	, kindly attempt onitors. It has tw s per 100 is .9	-		
Q9	option King electronic Design A: Prob Probability to y Cost for Design	s wants to launch bability to yield 6 rield 65 good mo	stions has option h new line of mo 50 good monitor nitors per 100 is 100	, kindly attempt onitors. It has tw s per 100 is .9 .1	-		
Q9	option King electronic Design A: Prob Probability to y Cost for Design Design B: Prob	s wants to launch bability to yield 6 rield 65 good mo n A is Rs. 1000,0	stions has option h new line of mo 50 good monitor nitors per 100 is 54 good monitor	, kindly attempt onitors. It has tw s per 100 is .9 .1 s per 100 is .80	-		
Q9	optionKing electronicDesign A:Probability to yCost for DesignDesign B:Probability to y	s wants to launce bability to yield 6 rield 65 good mo n A is Rs. 1000,0 bability to yield 6	stions has option h new line of mo 50 good monitor mitors per 100 is 54 good monitors mitors per 100 is	, kindly attempt onitors. It has tw s per 100 is .9 .1 s per 100 is .80	-	15	CO4
Q9	optionKing electronicDesign A: ProbProbability to yCost for DesignDesign B: ProbProbability to yCost for DesignCost for Design	s wants to launch bability to yield 6 rield 65 good mo n A is Rs. 1000,0 bability to yield 6 rield 59 good mo	stions has option h new line of mo 50 good monitor onitors per 100 is 500 54 good monitors onitors per 100 is 500	, kindly attempt onitors. It has tw s per 100 is .9 .1 s per 100 is .80 .20	-	15	CO4
Q9	optionKing electronicDesign A:Probability to yCost for DesignDesign B:Probability to yCost for DesignProbability to yCost for DesignProbability to yCost for Design- Production run	as wants to launch bability to yield 6 yield 65 good mo in A is Rs. 1000,0 bability to yield 6 yield 59 good mo in B is Rs. 135,00 in in both the case	stions has option h new line of mo 50 good monitor nitors per 100 is 000 54 good monitors nitors per 100 is 00 es is 100000 uni	, kindly attempt onitors. It has tw s per 100 is .9 .1 s per 100 is .80 .20 ts	-	15	CO4
Q9	optionKing electronicDesign A:Probability to yCost for DesignDesign B:Probability to yCost for DesignProbability to yCost for DesignProbability to yCost for Design- Production run	s wants to launch bability to yield 6 rield 65 good mo n A is Rs. 1000,0 pability to yield 6 rield 59 good mo n B is Rs. 135,00 n in both the case good or bad will	stions has option h new line of mo 50 good monitor nitors per 100 is 000 54 good monitors nitors per 100 is 00 es is 100000 uni	, kindly attempt onitors. It has tw s per 100 is .9 .1 s per 100 is .80 .20 ts	o design options	15	CO4
Q9	optionKing electronicDesign A:Probability to yCost for DesignDesign B:Probability to yCost for DesignProbability to yCost for Design- Production run- Each monitorsold for Rs 150	s wants to launch bability to yield 6 rield 65 good mo n A is Rs. 1000,0 pability to yield 6 rield 59 good mo n B is Rs. 135,00 n in both the case good or bad will	stions has option h new line of mo 50 good monitor nitors per 100 is 00 54 good monitors nitors per 100 is 00 es is 100000 uni cost Rs 75 per u	, kindly attempt onitors. It has tw s per 100 is .9 .1 s per 100 is .80 .20 ts unit for manufact	o design options	15	CO4

Q10	Apply the three po five jobs mentione				
	Job	Job work(Processing) time (Days)	Job Due Date(Days)		
	A	6	8	15	CO4
	В	2	6	15	CO4
	С	8	18		
	D	3	15		
	Е	9	23		