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Abstract
This experimental study explains the phenomena of secondary flow development due to change in rib perforation and the
effect on improvement in THPP values due to variation in β andW /w values of a perforated multi-V rib roughness applied in
double-pass parallel flow solar air heater (DPPFSAH). The fixed parameters are e/D � 0.043, p/e � 10, α � 60° andW /H �
12, and the range of variable parameters includes β � 0.0–0.31, W/w � 2–10 and Re � 2000–18,000. The optimum values
of Nu/Nus,f /f s, THPP and TEIF are observed as 9.66, 12.31, 3.96 and 1.33, respectively, at β � 0.27 and W/w � 6. The
maximum improvement in THPP values was 3.96 times and 1.90 times in DPPFSAH with perforation and continuous rib
with a smooth plate, respectively. Double-pass SAH outperforms the single-pass SAH. Correlations for Nu and f are also
developed for DPPFSAH with ± 14% and ± 7% accuracy.

Keywords Solar energy · Solar air heater · Double pass · Perforated rib · Multi-V rib

List of Symbols

A Area (m2)
D Diameter (m)
e Rib height (m)
H Duct height (m)
h Convective coefficient of heat transfer (W/m2K)
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I Average insolation (W/m2)
L Duct length (m)
ṁ Mass flow rate (kg/s)
P Pressure (Pa)
T Temperature (K)
w Rib width (m)
W Duct width (m)

Subscripts

d Duct/channel, diameter
m Mean
s Smooth
h Hydraulic
th Thermal

Dimensionless parameters

Do/Dp Orifice diameter ratio
e/Dh Relative roughness height
f /f s Friction factor ratio
Nu/Nus Nusselt number ratio
W /H Duct aspect ratio
W /w Relative roughness width
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Re Reynolds number

Greek symbols

� Drop, gradient
η Efficiency
β Open area ratio, duct slop
μ Dynamic viscosity (Pa·s)
θ Manometer slop
α Attack angle (o)
THPP Thermohydraulic performance parameter
DPPF Double-pass parallel flow
SAH Solar air heater

Abbreviations

THPP Thermohydraulic performance parameter
DPPF Double-pass parallel flow
SAH Solar air heater

1 Introduction

Solar air heat technology may be used in several applica-
tions to minimize the carbon footprint of traditional heating
systems, including fossil fuels, and offer a more sustainable
way to generate thermal energy. A traditional solar air heater
(SAH) typically having a flat wooden duct with a base plate
having synthetic roughness, a transparent glazing and insu-
lating material on the base and side-wise. SAH applications
are usually limited to low-temperature gradient uses such as
water heating, room heating, crop drying, agricultural season
extensions, preheating, process heating, commercial venti-
lation makeup air, air conditioning and space heating and
cooling [1, 2]. SAH’s usage in low-temperature gradient
applications can be ascribed to the reduced heat trans-
fer between air and the roughened absorber plate, which
is caused by the reduced convection heat transfer coeffi-
cient. Several studies have focused on different strategies
to enhance the convection coefficient by employing a vari-
ety of design options with different roughness geometry and
to analyse the SAH thermohydraulic performance parameter
(THPP) [3].

The basic methods used by researchers to increase the
single-pass SAH (SPSAH) performance were variations in
geometry parameters, operation parameters and the addition
of the number of passes of fluid flow [4, 5]. Since the appli-
cation of double-pass SAH (DPSAH) increases the collector
surface area, it offers considerable gains in heat transfer [6].

Double-pass SAH with cross-flow [7, 8], recycling [9] and
parallel flow [10] are different DPSAH arrangements that
were used as the primary factors that affected the perfor-
mance [11–13].

Besides these reports, several researchers have focused
specifically on the effect of ribs and baffles on the heat trans-
fer enhancement over a smooth SAH. As per the literature,
the most influencing parameters in rib roughness include rel-
ative roughness height (e/Dh), relative roughness pitch (p/e),
angle of attack (α), aspect ratio (W /H), collector slope (β)
and rib geometry [13–19]. For multiple V-shaped ribs, Arya
et al. [20–22], Tabish et al. [23, 24] Ravi and Saini [25, 26],
Singh and Kaur [27] and Kumar et al. [17, 28] have deter-
mined the optimum configuration variable combinations for
multi-V rib configuration. When compared to SPSAH, Ravi
and Saini [26] found that the DPSAH improved the Nusselt
number ratio (Nu/Nus) by 3.4 times and the friction factor
ratio (f/f s) by 2.5 times. Thakur and Thakur [29] observed
a 2.3–4.1 times improvement in Nu value by applying W-
shaped ribs with staggering as compared to a smooth SAH.
Singh et al. [30, 31] analysed the effect of perforation with
continuous rib in multi-V geometry in SPSAH and DPPF-
SAH and observed significant improvement because of the
application of perforations. Singh et al. [32, 33] investi-
gated the effect of variation in β and W/w for a distinct set
of perforated multi-V ribs and found that the effectiveness of
SPSAH improved significantly.

A review by Hernández and Quinonez [34] reveals that
the application of DPPFSAH reduces drag forces to a mini-
mal level, which handles high pumping power while having
optimum thermal effectiveness. The rapid air flow rate of
the supplementary streams via holes creates more turbulence
during detachment and reattachment, which enhances the
THP of SAH [35]. Because of the high airflow rate via sec-
ondary passages,DPPFSH’s perforatedmulti-V ribbed rough
surfaces canplay an essential role in improvingNuand reduc-
ing f values. The aim of the current study is to analyse the
effects of variation in β and W/w values on THP for DPPF-
SAH and compare it with the SPSAH studied by Singh et al.
[32] and other researchers. The current research thus seeks to
explore the effect of perforations in ribs on the performance
of DPPSAH.

2 Set-up Configuration and Roughness
Parameter Details

A DPPFSAH set-up (Fig. 1a–c) is fabricated as per the
ASHRAE standard (AHSRAE 93-77, 1977). The detailed
description of set-up, fixed and variable parameters is men-
tioned in detail in earlier research work [31] and mentioned
in Table 1.
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(a) 

(b) 

(c) 

450 mm350 mm W=1000 mm

Inlet SectionThermocouples

Absorber Plate
Outlet Section Pressure Tap Pressure Tap

Air Out

H= 25 mm

Thermal Insulation

Upper Pass

180 mm

Test Section

Air In

Lower Pass

Solar Simulator (Halogen Hanger) 

Transparent Glass

Absorber Plate

Pressure Tubes

Artificial Roughness

Primary Insulation 
(Glass Wool)

Secondary Insulation 
(Thermocol)

Wooden Box

Halogen Tubes 

Upper Air Pass

Lower Air Pass

Channel for Plate moment

H= 25 mm

Fig. 1 a Experimental set-up, b cross-sectional view and c thermocouple and pressure tap placement in DPPFSAH [31]
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Fig. 2 a Parameter denotation onmulti-V perforated plate, b front view of ribs with variation in β, c perforated V-shaped roughness rib arrangements
on both sides of the base plate

Table 1 Parameters being used in the study are listed below

Parameter notation with unit Value

W (m) 0.3

H (m) 0.025

W/H 12

Do/Dp 0.55

Dh (m) 0.04615

e (m) 0.002

e/D 0.043

p/e 10

α (o) 60

W/w 2: 2:10

β 0.0, 0.21, 0.27, 0.31

Re 2000:2000:18,000

I (W/m2) 800

Rib type Multi-V ribs

Rib material GI wire (continuous rib), PVC
(perforated rib)

Figure 2a–c gives a visual representation of perforated
multi-V rib roughness geometry taken up in this study.

3 Data Handling

Although the detailed description of the governing equations
and data handling is discussed in the preceding work by the
authors [31], the same equations are mentioned here in brief,
for the improved readability of the current paper. The THP
values were calculated by averaging the data values. The

average temperature of base plate Tpmean can be calculated
as [36]:

Tpmean � 1

18

(
18∑
i�1

T i

)
(1)

The average air temperature T amean can be found as:

Tamean � Tin + Tout
2

(2)

were Tin � Tin1 + Tin2
2

and

Tout � Tout 1 + Tout 2 + Tout 3 + Tout 4 + Tout 5
5

(3)

Air mass flow rate is measured by:

ṁ � cdAo

√
2ρ(�Po)

1 − (
Do/Dp

)4 (4)

where

�P0 � ρmg�ho sin θ (5)

The velocity of air is considered as:

V � m/ρWH (6)

Channel hydraulic diameter (Dh) can be found as:

Dh � 4WH/2(W + H) (7)
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Test section friction factor (f ) can be calculated as:

f � 2(�p)dDh/4ρLv2 (8)

The heat transfer coefficient (h) is defined as:

h � Qu/Ap
(
Tpm − T f m

)
(9)

The useful heat gain (Qu) is measured as:

Qu � ṁcp(Tout − Tin) (10)

By Eqs. (7) and (9), the Nusselt number is [37]:

Nu � hDh/K (11)

The Reynolds number (Re) is measured as:

Re � V Dh/v (12)

Finally, the DPPFSAH thermal efficiency (ηthermal) was
obtained as:

ηthermal � ṁCp�T /I Ap (13)

4 Validation of Experimental Set-ups
and Analysis of Uncertainties

An experimental set-up of DPPFSAH having a smooth plate
with Re in the range of 2000–18,000 was tested for the val-
idation study. The measured values of Nus and f s are put
in comparison with the revised Dittus–Boelter and revised
Blasius equations, respectively [38].

By modified Dittus–Boelter equation:

Nus � 0.024Re0.8
0.4
Pr (14)

Modified Blasius equation:

fs � 0.085Re−0.025 (15)

An illustrative connection between empirical and theoret-
ical Nus and f s results for Re is shown in Fig. 3.

The Nu,f and Re were calculated using empirically
collected data, including airflow, intake and exit average
temperature, solar irradiation and pressure losses. For error
analysis, this study uses the Kline and McClintock [39]
method. The author provides a detail of uncertainty calcu-
lation in the earlier published work [32]. The mean error
percentages of Nu, Re and f are observed as ± 1.83%, ±
1.65% and ± 3.28%, respectively.

5 Results and Discussions

The assessment of design and performance variables on the
THPP of DPPFSAH that has been artificially roughened
using perforated multi-V ribs was investigated and analysed.

5.1 Near-wall flow development

Figure 4A, b shows how perforation in a multi-V rib causes
complicated fluid flow patterns at the wall surfaces when
compared to an unbroken rib. The fluid flow area and stream
reattachment interval beneath the ribs limit the quantity
of transferred energy from the base plate [40]. Geometry
parameters drive the THP enhancements, which may be
addressed through Reynolds number (Re), rib roughness and
duct characteristics. In perforated ribs, the zone of reattach-
ment shrinks, and the growth of upstream and downstream
vertices reduces, leading to even more close connections for
fresh fluid flowwith the heated surface and improved thermal
interaction inside the reattachment zone [41].

The stream’smixing between the two neighbouring perfo-
rated ribs and front vortices is also improved by perforation
in the ribs, allowing it to flow alongside it. Tariq et al. [42]
suggest that this improves flow capacity and lowers pressure
drop, leading to less pumping power required to sustain fluid
flow. Furthermore, the perforation allows cooler secondary
air to easily replace trapped air in the vortex that combines it
with the main flow, enhancing heat transfer beyond the ribs.
Perforation promotes mixing throughout the rib and plate
contact area and lowers vortices for smaller Reynolds num-
bers. It can accelerate the levels of turbulent mixing in the
stream. Figure 5a, b shows this phenomenon of producing
turbulence between the two consecutive ribs. As a result of
the increased turbulence, rib perforation rises THP.

5.2 Effect of OperatingVariables

In this section, the influence of different variables is stud-
ied by maintaining the other parameters’ values unchanged.
The changes in varying parameters have been mapped with
Re, W/w and β, and their effects are described and analysed
in detail.

5.2.1 Effect of Reynolds Number (Re)

Because of a substantial improvement in mixing and turbu-
lence in the secondary stream attributed to the perforations,
Fig. 6a–d demonstrates a substantial enhancement in Nu val-
ues for higher values of Re, resulting in a larger Nu and
enhanced thermal outcomes of DPPFSAH. In DPPFSAH, at
β � 0.27, the optimal value of Nu is 556.19 forW/w� 6 atRe
� 18,000, respectively. Figure 8a indicates the comparison
between Nu for different β values atW/w � 6 for perforated
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Fig. 3 Nus and f s measured and
theoretical results for a smooth
DPPFSAH

(a)       (b) 

Absorber
plate

Flow Direction Zone of recirculation flow
Primary flow

Continuous ribs
Cross section

Flow Direction

Downwind 
vortex

Downwind 
vortex

Upwind 
vortex

Upwind 
vortex

Primary flow Reattachment Point

Up Side

Down Sidep/e=10

DPPFSAH with continuous rib

Absorber
plate

Flow Direction

Perforated ribs
Cross section

Flow Direction
Primary flow

Reattachment Point

Down Sidep/e=10

DPPFSAH with Perforated rib

Zone of recirculation flow
Up Side

Secondary flow

Secondary flow

Fig. 4 Near-wall flow development of a continuous rib (β � 0.0) [41], b perforated rib [42]

multi-V rib and the flat duct in SPSAH andDPPFSAH, and it
is clearly evident that the roughened DPPFSAH outperforms
the roughened SPSAH in all cases. Figure 7a–d explains the
change in f value with different β values for a range of Re in
the DPPFSAH and shows a considerable reduction because
of additional flow developed due to perforated ribs, which
decreases the flow barrier and decreases energy requirement.
The minimal value of f � 0.04476 is shown in DPPFSAH
with β � 0.31 atW/w � 2 and Re� 18,000. Figure 8b shows
the comparison between different f values for different β

values at W/w � 6 in SPSAH and DPPFSAH. SPSAH with
roughness shows minimum values for friction factor as com-
pared to DPPFSAH in all cases. Under the same operating
circumstances, perforation in multi-V ribs reduces energy
consumption significantly.

5.2.2 Effect of Relative Roughness Width (W/w)

Figure 9a–d illustrates the influence of W /w on Nu for dif-
ferent β values, and the figure indicates that increasingW /w
initially improves Nu in all four conditions, attaining a max-
imum value at W /w � 6, and any additional rise in the W/w
decreases the Nu value. It is expected that, atW /w � 6, flow
mixing induced due to the proposed geometry has attained
its maximum value and any further rise inW/w could disrupt
the improvement in secondary flow due to flatness growth
in roughness geometry and reduce rib effectiveness, which
reduces thermal effectiveness. While Fig. 10a–d illustrates
the influence of W /w on f , the f value regularly increases
with an augmentation in W/w value due to the turbulence
formed in the flow.
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(a) (b) 

Downwind 
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Secondary Flow

Flow unaffected by rib

Fig. 5 Flow movement and development of vortices a continuous rib, b perforated rib in the DPPFSAH duct [42]

Fig. 6 Influence of Re on Nu for different β value a 0.0, b 0.21, c 0.27 and d 0.31 at different W /w values in DPPFSAH
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Fig. 7 Influence of Re on f for different β value a 0.0, b 0.21, c 0.27 and d 0.31 for different W /w values in DPPFSAH

Fig. 8 Comparison between a Nu and Re and b f and Re of SPSAH and DPPFSAH for different β values
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Fig. 9 Nu versus W /w plots for different β values a 0.0, b 0.21, c 0.27 and d 0.31 in DPPFSAH

5.2.3 Effect of Open Area Ratio (ˇ)

Figure 11A shows Nu increasing as it rises to β � 0.27, then
decreasing as it rises again for a further increase in β value.
Nu is optimal at β � 0.27, although it is minimal at β � 0.0.
The radial development of a secondary flow will be higher at
a given linear distance if the perforation diameter is larger.
That leads to more fluid flow mixing and reduces the flow
zone on the downside of each rib. Once the β value reaches
0.27, the fluid flow through the perforations drops, which
may be insufficient to improve the flow through the aperture,
resulting in reduced flow turbulence and fluid mixing, and
therefore reduced thermal efficacy. The valve can be man-
aged in such a way that the flow passing out of the hole is
better mixed, resulting in regional turbulence and improved
heat transfer between the flow and the base plate. In the cur-
rent set of investigations, the optimal THP was obtained by
keeping the β value at 0.27. This may be the best value for
such a perforatedmulti-V rib design arrangement and airflow
circumstances. Figure 11b depicts the effect of variation in
β values on the f value for the same other parameters. Since
a greater β value implies fewer resistive forces in fluid flow,
the f starts reducing for an increase in β value.

5.2.4 Effect on Nusselt Number and Friction Factor Ratio

Figure 12A, b shows the Nu/Nus and Re relationships in
DPPFSAH for different rib combinations and a comparison
of SPSAH and DPPFSAH with different β values atW/w �
6. At Re � 6000, the perforated rib with β � 0.27 attains
the maximum value of Nu/Nus � 9.66, which continues for
allW/w values. For further increment in Re values, a sudden
decrease in Nu/Nus values which turn into a gradual increase
and again achievedoptimumvalues atRe�18,000.Theplau-
sible explanation behind the underlying phenomenon is that
a further increase in β value after Re� 6000 lowers Nu/Nus.
This is fair given that roughness-induced air mixing reached
its optimal value at β � 0.27, and any further increases in Re
levels may interrupt the creation of secondary flow, leading
a reduction in Nu/Nus.

Similarly, Fig. 13a, b depicts the influence of Re on f/f s
in DPPFSAH for various β levels and a comparison between
SPSAH and DPPFSAH with different β values at W/w � 6,
trends show that f/f s start decreasing with an increase in β

value because of the formation of a decent secondary air-
flow via the perforations. The maximum value of f/f s can be
observed as 12.31 at β � 0.0, for W/w � 10 at Re � 4000.
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Fig. 10 f versus W /w plots for different β values a 0.0, b 0.21, c 0.27 and d 0.31 in DPPFSAH

Fig. 11 a Nu versus β and b f versus β for different rib combinations in DPPFSAH
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Fig. 12 a Nu/Nus versus Re for different β in DPPFSAH and b Nu/Nus versus Re comparison for SPSAH and DPPFSAH with different β values
at W/w � 6

5.3 Thermohydraulic Performance

The combination of Nu and f generates contradictory con-
texts wherein evaluating the advantages of employing arti-
ficial roughness becomes challenging. Hence, Webb and
Eckert [43] suggested the thermohydraulic performance
parameter (THPP), which equates thermal performance to
frictional losses and helps in finding the gain in THPP for
suggested roughness as compared to the plain duct for the
same power requirements. THPP can be written as:

THPP �
[
Nur
Nus

]
/

[
fr
fs

] 1
3

(16)

Further, the concept of the thermal efficiency improve-
ment factor (TEIF) can be invoked to characterize how
perforated ribs enhance heat transmission over continuous
solid ribs (β � 0). It may be expressed as:

TEIF � (ηthemal)per. − (ηthemal)cont.

(ηthemal)cont.
(17)

Figure 14a, b depicts the relationship between THPP and
TEIFwithRe for various values ofβ inDPPFSAH,with opti-
mal results obtained in all cases for β � 0.27. The optimum
value of THPP for DPPFSAH is 3.96 at Re � 14,000 atW/w
� 6, and the maximum value of TEIF attains a value of 1.33
at β � 0.27, W/w � 2 and Re � 14,000, respectively. When
compared with the smooth channel, the proposed roughness
results in a significant increase in THPP and TEIF numbers.

5.4 Correlations for Nu and f for DPPFSAH

To establish the Nu and f correlations, the DPPFSAH func-
tional connection has been established for each set of data
of Nu and f . These are influenced by rib architecture and
geometrical variables [44, 45], i.e. Re,W/w andβ. For param-
eters in the ranges of β � 0.21–0.31, W/w � 2–10 and Re
� 2000–18,000, the correlation is valid. Nu and f have the
following functional relationships:

Nu � fn(Re, β, W/w) (18)

f � f n(Re, β, W/w) (19)

5.4.1 Nusselt Number Correlation

TheNucorrelationwas created by applying a regression anal-
ysis approach. Figure 15a shows the final correlation for Nu
through curve fitting for experimental data sets and can be
expressed as,

Nu � 0.0769 × 10−3(Re)0.8953(β)0.2417
(
W

w

)0.1244

(20)

5.4.2 Friction Factor Correlation

Figure 15B shows the f statistics plotted against the operating
parameters, and the correlation for the f could be represented
as:
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Fig. 13 Influence of Re on f/f s for different β in a DPPFSAH and b comparison of SPSAH and DPPFSAH with different β values at W/w � 6

Fig. 14 a THPP versus Re and b TEIF versus Re for different β values in DPPFSAH

f � 0.4234 × 10−3(Re)−0.2964(β)−0.3897
(
W

w

)0.1836

(21)

Figure 16a, b compares experimental and projected Nu
and f values, revealing that the predicted Nu and f value are
well within ± 14% and ± 7% of the empirical observations.
So, the existing correlations may expect Nu and f for the
factors investigated in this work, within acceptable limits.

5.5 Comparison of Performance

Table 2 compares optimal values of Nu/Nus, f /f s and THPP
of suggested rib roughness with other comparable rib designs
examined by the researcher forDPSAH.Table 2 shows that in
the current experimental set-up for a specific range of param-
eters, ribs having an open area ratio (β)� 0.27 outperformed
the other set-ups compared in this study.

123



Arabian Journal for Science and Engineering

Fig. 15 Correlation equation and trained line for a Nu and b f for DPPFSAH

Fig. 16 Comparison of actual and anticipated findings of a Nu, b f for developed a correlation for DPPFSAH

6 Conclusions

The THPP evaluations and airflow movements in a DPPF-
SAH duct demonstrate that perforated multi-V ribs created
a considerable improvement in performance outcomes over
a perforated SPSAH and smooth DPPFSAH, respectively.
The following concise summary outlines the findings of the
study:

• Increasing the perforation size in multi-V rib DPPFSAH
decreases friction losses and reattachment frequency and
vortices’ dimensions behind the rib, improving fluid mix-
ing and lowering blower power requirements by allowing

secondary flow. It also improves the re-circulation region
of flow on the ribs’ base, resulting in a higher THPP for
the DPPFSAH.

• In DPPFSAH, the optimal performance was reported at an
open area ratio (β) � 0.27 for all four values of β ranging
from 0.0 to 0.31.

• The best THPP results were obtainedwith a relative rough-
ness width (W/w)� 6 for five differentW/w values ranging
from 2 to 10. For DPPFSAH, the optimum results for
Nu/Nus, f /f s, THPP and TEIF were discovered at 9.66,
12.31, 3.96 and 1.33, as compared to the smooth plate,
respectively.
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Table 2 Comparative of purposed rib configuration Nu/Nus, f/f s and THPP with the other comparable published rib shapes for SAH

Researcher Roughness geometry
shape

Pass type Roughness
schematic

Major findings

Nu/Nus f /f s THPP

Current study Perforated multi-V
rib with (β � 0.0,
0.21, 0.27, 0.31)

Parallel flow
double pass

β �
0.00

5.23–5.94 9.21–12.31 1.53–1.90

β �
0.21

6.70–7.78 7.85–8.90 2.29–2.93

β �
0.27

8.23–9.66 7.19–8.15 3.07–3.96

β �
0.31

7.12–8.36 6.73–7.63 2.83–3.66

Ravi and Saini
[26]

Multi-V rib desecrate
staggered

Counter flow
double pass

3.4 2.5

Tated et al. [46] Transverse ribs Counter flow
double pass

1.28 1.17

Sharma et al. [47] V rib roughness Counter flow
double pass

1.7 1.9

Metwally et al.
[48]

Multi-layer mesh Parallel flow
double pass

– – 75%

Satyender Singh
et al. [49]

Porous media Wavy channel – – 93%

Chamoli and
Thakur [50]

Perforated V baffles Single pass 1.5–3.0 – –

Jain et al. [51] Baffles with discrete
V perforation

Single pass 4.24 14.73 2.24

Table 3 Uncertainty interval of various measurements

S.
no.

Parameter measured Symbol Instrument used Least count Uncertainty

1 Duct dimensions:
Length
Width
Depth

L
W
H

Steel linear scale
Vernier calliper
Vernier calliper

1.00 mm
0.05 mm
0.05 mm

± 1 mm/1 m
± 0.05 mm ± 0.05 mm

2 Flow measurements:
Pipe diameter
Throat diameter

Vernier calliper
Vernier calliper

0.05 mm
0.05 mm

± 0.05 mm
± 0.05 mm

3 Pressure drop measurements:
Across duct
Across orifice

(�P)d
(�P)o

Micro-manometer
U tube manometer

0.001 Pa
1 mm of kerosene

± 0.001 Pa
± 1 mm

4 Atmospheric pressure Mercury barometer 0.1 mm of Hg ± 0.1 mm

4 Temperature T C-type thermocouples …… ± 0.25 °C

5 Dimensions of aluminium wire
(rib)
Height
Width
Pitch

e
w
p

Vernier calliper
Vernier calliper
Vernier calliper

0.05 mm
0.05 mm
0.05 mm

± 0.05 mm
± 0.05 mm
± 0.05 mm

6 Current
Voltage

I
V

Digital ammeter Voltmeter 0.01 A
0.1 V

± 0.01 A
± 0.1 V

7 Insolation I Pyranometer 0.01 mV ± 0.01 m V
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• The established correlations will be helpful in determining
Nu and f values that indicate efficient thermal perfor-
mance and less energy usage, within a set range of W/w,
β and Re.

Perforated DPPFSAH outperforms the perforated
SPSAH, followed by the continuous DPPFSAH and
continuous SPSAH. The observations of the current study
show the potential opportunity for the application of perfora-
tion in the various proposed rib geometries, so the researcher
can examine these roughness for better performance and new
optimum values can be drawn for rib roughness parameters
of SAH.

Declarations

Conflict of interest “The authors declare that there are no conflicts of
interest.”

Appendix A: Uncertainty Analysis

The list of various measured parameters, instruments used
for their measurement with their least counts and uncertainty
used is given in Table 3.

Employing empirically collected data including airflow,
inlet and exhaust air temperature, solar irradiation and pres-
sure losses, the contributing factors Nu, f and Re were
determined. For error analysis, the current study adopts the
Kline and McClintock [39] method. The uncertainty associ-
ated with the study of "⨍ " is as mentioned below:

δ f

f
�

[(
δ f

∂x1
δx1

)2

+

(
δ f

∂x2
δx2

)2

+

(
δ f

∂x3
δx3

)2

+ · · · +
(

δ f

∂xn
δxn

)2
]0.5

where δx1, δx2, δx3, ….., δxn are the potential discrepancies
in assessments of × 1, × 2, × 3,….… xn.

δ⨍ is known as absolute uncertainty, and δ⨍ /⨍ is known
as relative uncertainty.

Using Eqs. (8), (11) and (12), uncertainty in Nu, Re and f
can be found as:

Nusselt number (Nu)

δNu

Nu
�

[(
δh

h

)2

+

(
δD

D

)2

+

(
δk

k

)2
]0.5

(23)

Reynolds number (Re)

δRe

Re
�

[(
δV

V

)2

+

(
δρ

ρ

)2

+

(
δD

D

)2

+

(
δμ

μ

)2
]0.5

(24)

And friction factor (f )

δ f

f
�

[(
− δ

V d
Vd

)2

+

(
−δρ

ρ

)2

+

(
δD

D

)2

+

(
− δ

L
L

)2

+

(
δ(�Pd)

�Pd

)2
]0.5

(25)
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