Name:

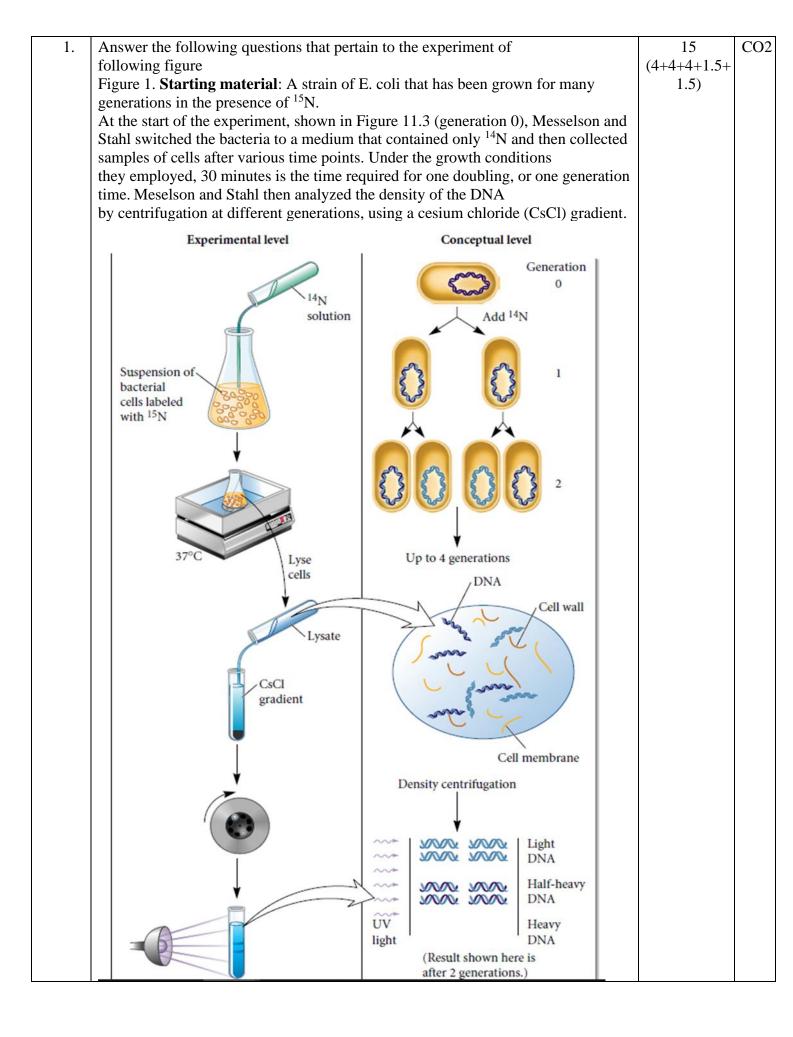
Enrolment No:

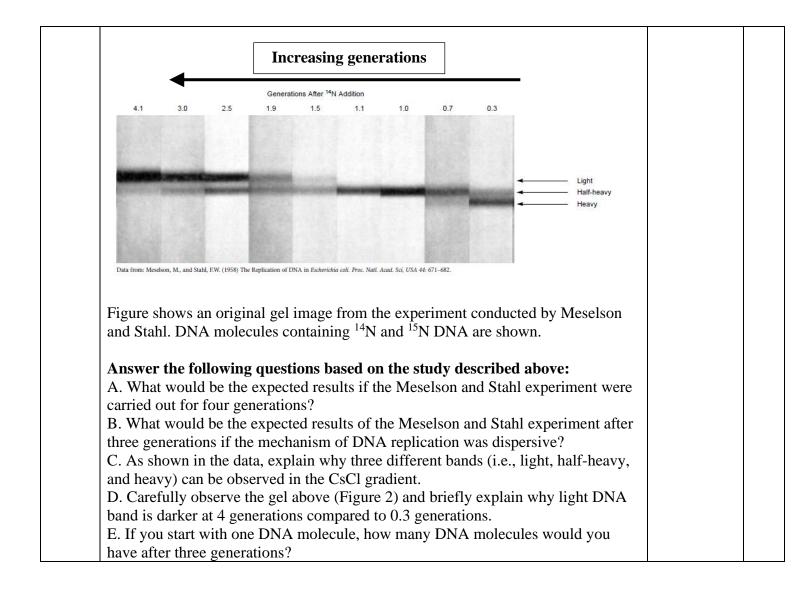
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

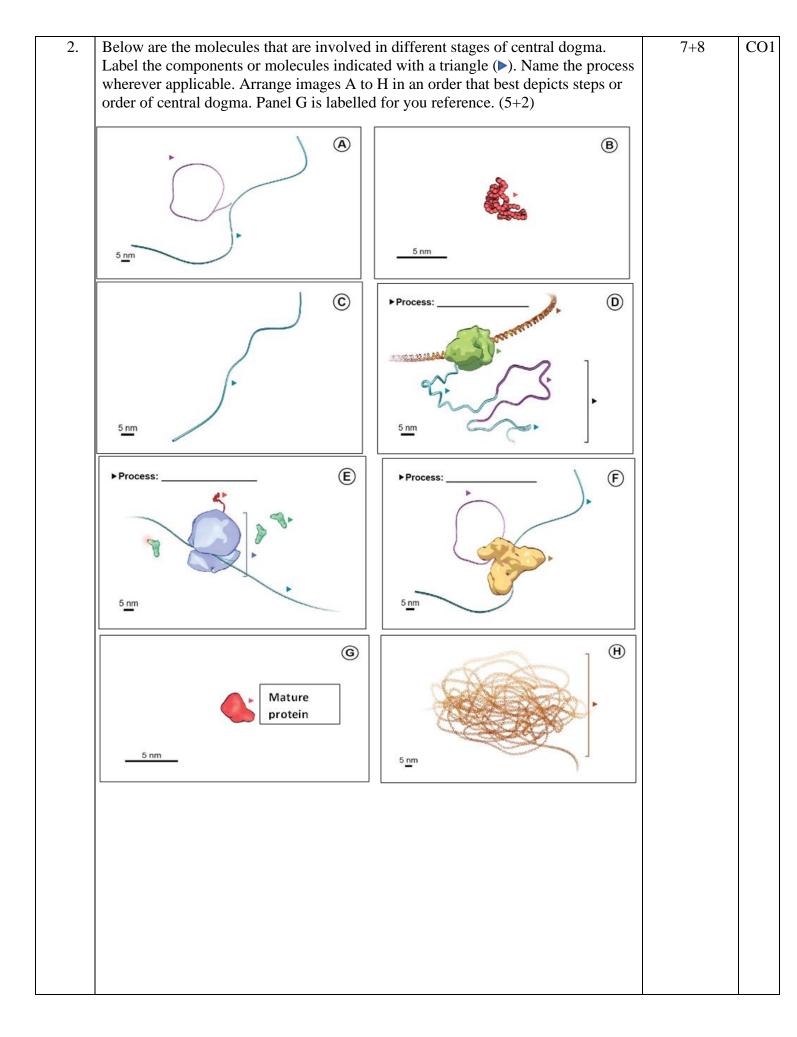
End Semester Examination, May 2022

Course: Molecular Biology and genetics Semester: II Program: M.Sc. Microbiology Course Code: HSMB70276

Time : 03 hrs. Max. Marks: 100


Instructions:


Q.No	Section A	(20Q x1.5M= 30 Marks)	COs
	Short answer questions/ MCQ/True & False		
1.	What structural feature allows DNA to store information?	1.5	CO1
2.	An organism has a $G + C$ content of 64% in its DNA. What are the percentages of A, T, G, and C?	1.5	CO1
3.	 Hershey and Chase experiment for the validation of DNA as a genetic material was based on which principle? a) Transformation b) Transduction c) Conjugation d) None of the above 	1.5	CO1
4.	Match the following to their functions: (a) topoisomerase (b) Primase (c) Helicase with: (1) Relieves stress of overwound DNA (2) Unwinds DNA (3) Joins sugar phosphate backbone (4) Synthesizes short RNA nucleotides For example: b-1 means that Primase relieves the stress of overwound DNA	0.5+0.5+0.5	CO2
5.	 A DNA strand can serve as a template strand on many occasions. 1. True 2. False Justify your choice. 	0.5 + 1	CO2
6.	 To which region of a gene does an RNA polymerase bind to initiate transcription? a) 5' UTR b) 3' UTR c) CDS 	1.5	CO3


	d) Promoter		
7.	In what direction is RNA polymerized? 1. 5' to 3' 2. 3' to 5' 3. N to C 4. C to N 5. 5 to 3 6. 3 to 5	1.5	CO3
8.	More than one codon typically encodes each amino acid. 1. True 2. False Justify your choice with an example.	0.5 + 1	CO4
9.	ACUAGCUACGAUGCAUGCUCGAUGCUAGCAUCGCUGUAGCUAGC	1.5	CO4
10.	 How does lactose (allolactose) promote transcription of LacZ? Lactose binds to a repressor protein, and alters its conformation to prevent it from binding to the DNA and interfering with the binding of RNA polymerase. Lactose binds to the polymerase and increases efficiency. Lactose binds to an activator protein, which can then help the RNA polymerase bind to the promoter and begin transcription. Lactose prevents premature termination of transcription by directly binding to and bending the DNA 	1.5	CO4
11.	Which molecule signals presence of high tryptophan amount in the environment in the trp operon? 1. Tryptophan 2. cAMP	1.5	CO4
	3. Glucose		

	4. Lactose		
12.	An operon is repressible, in which a small effector molecule turns off transcription.	1.5	CO4
	Which combinations of small effector molecules and regulatory proteins could be involved?		
	A. An inducer plus a repressor		
	B. A corepressor plus a repressor		
	C. An inhibitor plus an activator		
	D. An inducer plus an activator		
13.	For each of the following mutations, mention whether it is a transition, transversion, addition, or deletion? The original DNA strand is	(0.5 x 3)	CO6
	5′–GGACTAGATAC–3′		
	(Note: Only the coding DNA strand is shown.)		
	A. 5'-GAACTAGATAC-3'		
	B. 5'-GGACTAGAGAC-3'		
	C. 5′–GGACTAGTAC–3′		
14.	How would each of the following types of mutations affect the amount of functional protein that is expressed from a gene?	(0.5 x 3)	CO6
	A. Nonsense		
	B. Missense		
	C. Up promoter mutation		
15.	In a typical Mendelian inheritance, a dihybrid ratio of 9:3:3:1 is expected. But several deviations to the rule occur as indicated below. Explain the phenomenon which lead to such deviations.	1.5	CO5
16.	Hemophilia is an X-linked recessive trait in humans. A heterozygous woman has children with Normal man.	(1+0.5)	CO5
	A. Give the genetic cross for offspring when a heterozygous woman has children with Normal man.		
	B. What is the probability that a son will be a hemophilic?		
17.	In a table form, describe the difference between dominance and incomplete dominance.	1.5	CO5

	Section C	(2Qx15M=3 0 Marks)	
4.	A. What is meant by the term 'attenuation' in trp operon?B. Is attenuation an example of gene regulation at the level of transcription or translation? Explain your answer.	1+4	CO4
3.	A. During mismatch repair, why is it necessary to distinguish between the template strand and the newly made daughter strand?B. With the help of diagrams, describe the process of mismatch repair.	2+3	CO
2.	A. What is the meaning of the term consensus sequence? Give an example.B. Describe the locations of consensus sequences within bacterial promoters.C. What are the functions of consensus sequences within bacterial promoters?	1+2+2	CO
1.	A. What are charged tRNAs?B. Briefly describe steps of translation.	1+4	CO
	Section B	(4Qx5M=20 Marks)	CO
	c. $\mathbf{RR} \times \mathbf{rr}$		
	a. $\mathbf{Rr} \times \mathbf{RR}$ b. $\mathbf{rr} \times \mathbf{Rr}$		
	(r), and heterozygous plants (Rr) have pink flowers. What gametes will be produced by each parent in the following crosses, and what will be the phenotypes of the offspring?		
20.	In four o'clock flowers, red flower color (R) is incompletely dominant over white	(0.5x3)	CO
19.	D. A locus is made up of alleles, which can be found at a gene on a chromosome. Explain germ cell mutations. Why are they harmful?	1.5	CO
	C. Chromosomes are different forms of a gene, which can be found at an allele on a locus.		
	B. Genes are made up of chromosomes, which can be found at a locus on an allele.		
	A. Alleles are different forms of a gene, which can be found at a locus on a chromosome.		
18.	Which of the following descriptions best fits the relationship amongst the terms gene, allele, locus, and chromosome?	1.5	CO

	(B) Cystic fibrosis transmembrane conductance regulator (CFTR) is a membrane		
	protein and chloride channel in vertebrates that is encoded by the CFTR gene.		
	This gene is found on chromosome 7		
	and is 4400 nucleotides in length. Second letter		
	The gene encodes the CFTR protein		
	that acts as a channel across the ucclear ucclear ucclear ucclear ucclear the		
	membrane to transport chloride ions.		
	More than 1,000 mutations in the		
	<i>CFTR</i> gene have been identified in		
	these mutations change single protein these mutations change single protein		
	building blocks (amino acids) in the guy gay gay u		
	CFTR protein or delete a small		
	amount of DNA from the <i>CFTR</i> gene.		
	Below is an abbreviated DNA sequence from the Wild-Type CFTR		
	gene. Wild-type refers to the most common form of the gene, in this case, it is		
	the normal sequence for a fully functioning CFTR protein.		
	the normal sequence for a rang functioning of the protein.		
	1. (a) Use the base code to transcribe each letter into RNA to form an mRNA		
	strand. Write the mRNA below the DNA (1)		
	(b)Use the codon chart to translate the mRNA into the amino acid sequence. Write the amino acid sequence below the mRNA (1)		
	Write the amino acid sequence below the mRNA. (1) TAC TAC AAA CCT CAA ACC ATA		
	TAG TAG AAA CCT CAA AGG ATA		
	mRNA:		
	Amino acids:		
	2. The $\Delta \Sigma 500$ metation are related that are also tide to be a new second as		
	2. The Δ F508 mutation occurs when three nucleotides have been removed as		
	shown below in bold. Rewrite this sequence with the deleted section removed and		
	determine the amino acids it now codes for. (2)		
	TAGTA <u>GAA</u> ACCTCAAAGGATA		
	New DNA Sequence:		
	mRNA:		
	Amino Acids:		
	3. (A) Compare the two amino acid sequences. How many amino acids are changed		
	in the mutant version? (1)		
	(B) Why are the first 2 amino acids the same even though the second codon is		
	different in the mutated version? (2)		
	4. Explain in your own words what kind of mutation occurred in the above case. (1)		
	Section D	(2Qx10M=2	
		0 Marks)	
1.	What are different steps in DNA replication? Sketch suitable diagrams describing	3+7	CO2
1.	the main events that occur during these three stages.	5-7	
		10	005
2.	Discuss different types of changes affecting the number, size, or structure of	10	CO5
	chromosomes that causes chromosome aberrations.		