Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2022

Course: Engineering Thermodynamics Semester: II Program: B.Tech./Int. B.Tech in Food Technology & Biotechnology Course Code: MECH 1006

Time : 03 hrs. Max. Marks: 100

Instructions:

Q.No	Section A	(20Q x1.5M= 30 Marks)	COs
	Short answer questions/ MCQ/T&F		
Q	Statement of question		CO
1.	Which of the following is not a property of the system? (<i>a</i>) Temperature (<i>b</i>) Specific volume (c) Heat.		CO1
2.	Work done in a free expansion process is (<i>a</i>) zero (<i>b</i>) negative (c) positive.		CO1
3.	In the polytropic process equation $pv^n = \text{constant}$, if $n = 0$, the process is termed as (a) isochoric (b) isobaric (c) isothermal.		CO1
4.	In the polytropic process equation $pv^n = \text{constant}$, if <i>n</i> is infinitely large, the process is termed as (<i>a</i>) isochoric (<i>b</i>) isobaric (<i>c</i>) isothermal.		CO1
5.	The processes or systems that do not involve heat are called <i>(a)</i> isothermal processes <i>(b)</i> thermal processes <i>(c)</i> adiabatic processes.		CO1
6.	If a process in which both the system and the surroundings cannot return to their original conditions, it is known as (a) reversible process (b) irreversible process (c) energyless process.		CO1
7.	The internal energy of a perfect (ideal) gas depends on (a) only T (b) T, P (c) T, P, c		CO2

	T = temperature, P = pressure, C_v = specific heat at constant	
0	volume	
8.	The gas constant (R) is equal to the	CO2
	(a) $c_{p} + c_{v}$ (b) $c_{p} - c_{v}$ (c) $c_{p} \cdot c_{v}$	
	C_p = specific heat at constant pressure, C_v = specific heat at	
	constant volume	
9.	In isothermal process	CO
).	(a) temperature increases gradually (b) volume remains	
	constant (c) change in internal energy is zero.	
10	During throttling process	CO2
	(a) internal energy does not change (b) pressure does not	
	change (c) enthalpy does not change.	
11	If all the variables of a stream are independent of time it is	CO2
	said to be in	
	(a) steady flow (b) unsteady flow (c) uniform flow.	
10	A control velves refers to a	CO
12	A control volume refers to a	
	(a) fixed region in space (b) closed system (c) isolated	
	system	
13	A thermodynamic process can occur when it satisfies	CO
	(a) First law only (b) Second law only (c) both the laws.	
1.4		
14	A reservoir that absorbs energy in the form of heat is called	CO
	(a) Source (b) Sink (c) none of these.	
15	Thermal efficiency of a heat engine is always	CO
	(a) > 1 $(b) < 1$ $(c) = 0.$	
16	The efficiencies of all reversible heat engines operating	CO
	between the same two reservoirs are	
	(a) not equal (b) equal (c) 100%	
17	It is immediate for a pressent to pressed in a direction if the	СО
1/	It is impossible for a process to proceed in a direction if the entropy generation (S_{ij}) is	
	entropy generation (S_{gen}) is	
	(a) > 0 (b) < 0 (c) = 0.	
18	An isentropic process is always	CO
-	(<i>a</i>) irreversible and adiabatic (<i>b</i>) reversible and isothermal	
	(<i>c</i>) reversible and adiabatic.	
		I

19	Cyclic integra $(a) > 0$ (b)		r internally	reversible cyc	les is		CO4
20		Entropy generation (S _{gen}) for a reversible process is always $(a) > 0$ (b) < 0 (c) = 0.					CO4
		Se	ection B			(4Qx5M=20 Marks)	CO
Q	Statement of que	estion					
1.	How a closed system is different from an isolated system?				5	CO	
2.	Why specific heat at constant pressure (c_P) is bigger than specific heat at constant volume (c_V) ?				5	CO2	
3.	Write two stat	tements of the	second law	of thermodyr	namics.	5	CO
4.		Write first and second Gibbs equations and corresponding two Maxwell relations.					CO4
		Se	ction C			(2Qx15M=30 Marks)	
Q	Statement of que	estion (Case stud	dies)				CO
1.	Classify the following processes of a closed system as possible, impossible, or intermediate.					15	CO4
		Entropy Change (ΔS)	Entropy Transfer (S _{trans})	Entropy generation (S _{gen})			
			0				
	(a) (b) (c) (d)	>0 <0 0 >0	>0 >0	>0			
	(b) (c)	<0 0	>0	>0 <0			

	 (a) Determine work for each process (i.e. W₁₋₂, W₂₋₃, W₃₋₁) in kJ and (b) Prove W_{cycle} = Q_{cycle} 		
	$ \begin{pmatrix} p \\ 4 \\ 3 \\ 2 \\ 1 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 2 \\ 1 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ V(m^3) \\ \end{pmatrix} $		
	Section D	(2Qx10M=20 Marks)	
Q	Statement of question		СО
1.	A rigid tank contains 2 kg of air at 200 kPa and ambient temperature, 20°C. An electric current now passes through a resistor inside the tank. After a total of 100 kJ of electrical work has crossed the boundary, the air temperature inside is 80° C, is this possible? The average specific heat ($\overline{c_v}$) value over the temperature range is 0.7195 kJ/kg.K	10	CO4
2.	The data listed below are claimed for a power cycle operating between hot and cold reservoirs at 727°C and 27°C, respectively. For each case, determine whether the cycle operating reversibly, irreversibly, or is impossible. (a) $Q_H = 600 \text{ kJ}$, $W_{cycle} = 300 \text{ kJ}$, $Q_C = 300 \text{ kJ}$ (b) $Q_H = 400 \text{ kJ}$, $W_{cycle} = 280 \text{ kJ}$, $Q_C = 120 \text{ kJ}$	(5 + 5) = 10	CO3