

$\begin{gathered} \text { SECTION-C } \\ (2 \mathrm{Qx} 20 \mathrm{M}=40 \mathrm{Marks}) \\ \hline \end{gathered}$			
Q . 10	(a) Find the Taylor's series expansion of $f(x)=7 x^{2}-6 x+1$, about $x=2$. (b) Show that $\int_{0}^{\pi / 2} \sqrt{\sin \theta} d \theta \times \int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{\sin \theta}}=\pi$	20	CO1
Q. 11	(a) Find by elementary row operations the inverse of the matrix $A=\left[\begin{array}{lll} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{array}\right]$ (b) Investigate the values of λ and μ, so that the system : $2 x+3 y+5 z=9, \quad 7 x+3 y-2 z=8, \quad 2 x+3 y+\lambda z=\mu$ has (i) a unique solution; (ii) no solution ; (iii) an infinite number of solutions.	20	$\mathrm{CO5}$

