Name: Enrolment No:								
Program Name: B.TECH-ADE Semester $:$ VIII Course Name $:$ Modeling and Simulation Time $: \mathbf{0 3}$ hrs. Course Code $:$ MECH4006P Max. Marks: $\mathbf{1 0 0}$ Nos. of page(s) $: \mathbf{0 2}$ Instructions: Attempt All Questions. One question from section B and C have an internal Choice. Assume any Missing Data if required.								
SECTION A								
S. No. Q 1 Discuss various attributes characterizing a system by taking suitable example of any engineering system.							Marks	CO
							4	CO1
Q 2	Differentiate between various approaches used in system theories.						4	CO2
Q 3	How Lumped mass approximation helps in approximation of complex thermal engineering problem in modeling.						4	CO3
Q 4	Classify various optimization problems.						4	CO4
Q 5	Discuss various pitfalls of simulation approach.						4	CO5
SECTION B								
Q 6	Obtain a linear best fit by using the methodConcentration $\left(\mathrm{g} / \mathrm{m}^{3}\right)$ Reaction rate $(\mathrm{g} / \mathrm{s})$ Is a linear fit satisfact	to the least 0.1 1.75 y in t		$\begin{array}{\|l\|} \hline 0.5 \\ \hline 2.12 \\ \hline \end{array}$	hemic $\begin{array}{\|l\|} \hline 1 \\ \hline 2.32 \\ \hline \end{array}$	1 reactor	10	CO 3
Q 7	Two frictionless rigid bodies (carts) A and B connected by three linear elastic springs having spring constants $\mathrm{k} 1, \mathrm{k} 2$ and k 3 (as shown in figure given below). The springs are at their natural positions when applied force P is zero. Find the displacement x 1 and x 2 by using principal of minimum potential energy.						10	CO4

Q 8	Minimize $f(x)=9-8 x_{1}-6 x_{2}-4 x_{3}+2 x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}+3 x_{1} x_{2}+2 x_{1} x_{3}$ Subject to $x_{1}+x_{2}+2 x_{3}=3$ By 1) Direct Substitution 2) Constrained Variation 3) Lagrange multiplier Method OR A beam of uniform rectangular cross section is to be cut from a log having circular section of diameter 6a. The beam has to be used as a cantilever beam (length is fixed) to carry concentrated load at the free end. Find the dimensions of the beam that corresponds to maximum tensile (bending) stress carrying capacity.	10	CO4
Q 9	Comprehended various steps to design or analyze a complex system by simulation with flow chart.	10	CO5
SECTION-C			
Q 10	1) Find the dimensions of a cylindrical tin (with top and bottom) made up of sheet metal to maximize its volume such that the total surface are is equal to 36π. 2) Maximize $f=2 x_{1}+x_{2}+15$ Subject to $g(x, y)=x_{1}+2 x_{2}^{2}=3$ Find the solution using a. Method of Constrained Variation. b. Method of Lagrange Multiplier.	20	CO4
Q 11	Discuss following Simulations 1. Continuous 2. Combined Discrete-Continues 3. Monte Carlo 4. Spreadsheet OR Including following elements a) Problem Statement	20	CO5

	b) Program Organization and Logic c) Relevant Flow Charts d) Output and Discussion		
	Simulate any Inventory System.		

