Name:

Enrolment No:

Course Name

Semester

Time

: VIII

: 03 hrs.

Max. Marks: 100

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Program Name: B.TECH-ADE

: Modeling and Simulation

Course Code : MECH4006P

Nos. of page(s) : 02

Instructions: Attempt All Questions. One question from section B and C have an internal Choice.

Assume any Missing Data if required.

SECTION A

S. No.						Marks	CO
Q 1	Discuss various attributes characterizing a system by taking suitable example of any engineering system.					4	CO1
Q 2	Differentiate between various approaches used in system theories.					4	CO2
Q 3	How Lumped mass approximation helps in approximation of complex thermal engineering problem in modeling.						CO3
Q 4	Classify various optimization problems.					4	CO4
Q 5	Discuss various pitfalls of simulation approach.					4	CO5
		S	ECTION F	}			
Q 6	Obtain a linear best fit to the data given below from a chemical reactor by using the method of least squares:						
	Concentration(g/m ³) 0.1	0.2	0.5	1	1.2		
	Reaction rate(g/s) 1.75	1.92	2.12	2.32	2.5	10	CO3
	Is a linear fit satisfactory in this case?						
Q 7	Two frictionless rigid bodies (carts) A and B connected by three linear			10	CO4		
	elastic springs having spring constants k1, k2 and k3 (as shown in						
	figure given below). The springs are at their natural positions when						
	applied force P is zero. Find the displacement x1 and x2 by using						
	principal of minimum potential energy.						

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Q 8	Minimize $f(x)=9-8x_1-6x_2-4x_3+2x_1^2+2x_2^2+x_3^2+3x_1x_2+2x_1x_3$ Subject to $x_1+x_2+2x_3=3$ By 1) Direct Substitution 2) Constrained Variation 3) Lagrange multiplier Method		
	OR A beam of uniform rectangular cross section is to be cut from a log having circular section of diameter 6a. The beam has to be used as a cantilever beam (length is fixed) to carry concentrated load at the free end. Find the dimensions of the beam that corresponds to maximum tensile (bending) stress carrying capacity.	10	CO4
Q 9	Comprehended various steps to design or analyze a complex system by simulation with flow chart.	10	CO5
	SECTION-C		
Q 10	 Find the dimensions of a cylindrical tin (with top and bottom) made up of sheet metal to maximize its volume such that the total surface are is equal to 36π. Maximize f=2x₁+x₂+15 Subject to g(x, y)=x₁+2x₂²=3 Find the solution using Method of Constrained Variation. Method of Lagrange Multiplier. 	20	CO4
Q 11	Discuss following Simulations 1. Continuous 2. Combined Discrete-Continues 3. Monte Carlo 4. Spreadsheet	20	CO5
	OR Including following elements a) Problem Statement		

b) Program Organization and Logic	
c) Relevant Flow Charts	
d) Output and Discussion	
Simulate any Inventory System.	