Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Rocket Propulsion Program: B.Tech ASE Course Code: ASEG 4011P Semester: VIII Time : 03 hrs. Max. Marks: 100

Instructions: All questions are compulsory Assume necessary data if not given.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	СО
Q 1	Explain the need of solid propellants in booster rocket with illustrative example.	4	CO2
Q 2	Compare the hybrid propellant, liquid propellant and electrical rocket in terms of basic performance parameters.	4	CO3
Q 3	What are the principal losses that occurred in real nozzle when compared with ideal nozzle?	4	CO3
Q 4	How Combustion Instability occurs in the rocket engines and explain the methods to control Instabilities?	4	CO4
Q 5	What are the advantages of electrical propulsion engines (thrusters) over chemical rocket engines?	4	CO1
	SECTION B	• • • •	
	(4Qx10M= 40 Marks)		
Q 1	Characterize Subsonic, Sonic and Supersonic nozzles based on throat velocity, exit velocity, mach number, pressure ratio and shapes.	10	CO3
Q 2	A Russian rocket engine (RD-110) consists of four nonmoveable thrust chambers supplied by a single turbopump. The exhaust from the turbine of the turbopump then drives four vernier chamber nozzles (which can be rotated to provide some control of the flight path). Using the information below, determine the thrust, effective exhaust velocity, and mass flow rate of the four vernier thrusters. Individual thrust chambers (vacuum): F = 73.14 kN, $c = 3279$ m/sec Overall engine with verniers (vacuum): F = 297.93 kN, $c = 3197$ m/sec OR Analyze the influence of following parameters on the performance of solid propellant rocket: chamber pressure, propellant exposed surface area, initial grain temp and burning rate	10	CO2

Q 3	The following measurements were made in a sea level test of a solid propellant rocket motor:							
	Burn duration		40 sec					
	Initial mass before	test	1210kg					
	Mass of rocket mot		215kg					
	Average thrust		62,250 N					
	Chamber pressure		7.00 MPa					
	Nozzle exit pressure	۹	0.070 MPa			10	CO1	
	Nozzle throat diame		0.0855 m			10	COI	
	Nozzle exit diamete		0.0355 m 0.2703 m					
	Determine mass flow rate (m.), V_2 , C^* , C, and Is at 1000 and 25000 m							
	altitude. Assume an				00			
	start and stop transients. (At 1000, Pa= 0.0898 MPa and At 25000 m, Pa=							
	0.00255 MPa)							
Q 4	Analyze the factors			n the thrust	chamber of	10	CO2	
	Liquid Propellant ro	ocket engines				10		
			SECTION-	-				
			(2Qx20M=40 M	arks)				
Q 1	Based on various re	searches carr	ried in the field on	Based on various researches carried in the field on hybrid rocket engines, the				
	researchers propose the idea of three different fuel used in a multi-stage					20	CO4	
	researchers propose	the idea of t	hree different fuel			20	001	
			hree different fuel			20		
	hybrid rocket engin	e.		used in a m	ulti-stage	20		
	hybrid rocket engin Prepare a comparat	e. ive analysis c	f rockets hybrid p	used in a m propulsion sy	vstems,	20		
	hybrid rocket engin Prepare a comparat considering a three	e. ive analysis c stage hybrid	f rockets hybrid p rocket engine usir	used in a m propulsion syng one single	ulti-stage ystems, e type of fuel,	20		
	 hybrid rocket engin Prepare a comparation considering a three and a three stage hyperbolic 	e. ive analysis c stage hybrid brid rocket e	of rockets hybrid p rocket engine usin ngine using three	used in a m propulsion syng one single different fue	ulti-stage ystems, e type of fuel,	20		
	hybrid rocket engin Prepare a comparatic considering a three and a three stage hy stage. You can use	e. ive analysis c stage hybrid brid rocket e the following	of rockets hybrid p rocket engine usin ngine using three table for your and	used in a m propulsion syng one single different fue alysis.	ulti-stage ystems, e type of fuel, els for each	20		
	hybrid rocket engin Prepare a comparatic considering a three and a three stage hy stage. You can use System	e. ive analysis c stage hybrid vbrid rocket e the following Propellant	of rockets hybrid p rocket engine usin ngine using three table for your and $a(m^{1+2n}kg^{-n}s^{n-1})$	used in a m propulsion syng one single different fue alysis.	ulti-stage ystems, e type of fuel, els for each $G_0 (kg/m^2/s)$	20		
	hybrid rocket engin Prepare a comparation considering a three and a three stage hy stage. You can use System Pure HTPB	e. ive analysis of stage hybrid vbrid rocket e the following Propellant GO _x /HTPB	of rockets hybrid p rocket engine usin ngine using three table for your and $a(m^{1+2n}kg^{-n}s^{n-1})$ 2.85x10 ⁻⁵	used in a m propulsion syng one single different fue alysis. <u>n</u> 0.681	ulti-stage ystems, e type of fuel, els for each $G_0 (kg/m^2/s)$ 35-280	20		
	hybrid rocket engin Prepare a comparation considering a three and a three stage hy stage. You can use System Pure HTPB Paraffin	e. ive analysis of stage hybrid vbrid rocket e the following Propellant GO _x /HTPB GO _x /wax	of rockets hybrid p rocket engine usin ngine using three table for your and $a(m^{1+2n}kg^{-n}s^{n-1})$ 2.85x10 ⁻⁵ 9.1x10 ⁻⁵	used in a m propulsion syng one single different fue alysis. <u>n</u> 0.681 0.690	hulti-stage ystems, e type of fuel, els for each $G_0 (kg/m^2/s)$ 35-280 20-120	20		
	hybrid rocket engin Prepare a comparation considering a three and a three stage hy stage. You can use System Pure HTPB Paraffin Paraffin/13%Silbal	e. ive analysis of stage hybrid /brid rocket e the following Propellant GO _x /HTPB GO _x /wax GO _x /fuel	of rockets hybrid p rocket engine usin ngine using three table for your and $a(m^{1+2n}kg^{-n}s^{n-1})$ 2.85x10 ⁻⁵ 9.1x10 ⁻⁵ 9.4x10 ⁻⁵	used in a m propulsion syng one single different fue alysis. <u>n</u> 0.681 0.690 0.766	ulti-stage ystems, e type of fuel, els for each $\overline{G_0 (kg/m^2/s)}$ 35-280 20-120 150-300	20		
	hybrid rocket engin Prepare a comparat considering a three and a three stage hy stage. You can use System Pure HTPB Paraffin Paraffin/13%Silbal Cryo	e. ive analysis of stage hybrid /brid rocket e the following Propellant GO _x /HTPB GO _x /Wax GO _x /fuel GO _x /CH ₄	of rockets hybrid p rocket engine usin ngine using three table for your and $a(m^{1+2n}kg^{-n}s^{n-1})$ $2.85x10^{-5}$ $9.1x10^{-5}$ $9.4x10^{-5}$ $4.14x10^{-5}$	used in a m propulsion syng one single different fue alysis. <u>n</u> 0.681 0.690 0.766 0.830	ulti-stage ystems, e type of fuel, els for each $\overline{G_0 (kg/m^2/s)}$ 35-280 20-120 150-300 3-30	20		
	hybrid rocket engin Prepare a comparatic considering a three and a three stage hy stage. You can use System Pure HTPB Paraffin Paraffin/13%Silbal Cryo Pure HTPB	e. ive analysis of stage hybrid vbrid rocket e the following Propellant GO _x /HTPB GO _x /wax GO _x /fuel GO _x /CH4 GO _x /HTPB	of rockets hybrid p rocket engine using ngine using three table for your and $a(m^{1+2n}kg^{-n}s^{n-1})$ $2.85x10^{-5}$ $9.1x10^{-5}$ $9.4x10^{-5}$ $4.14x10^{-5}$ $8.7x10^{-5}$	used in a m propulsion syng one single different fue alysis. <u>n</u> 0.681 0.690 0.766 0.830 0.530	ulti-stage ystems, e type of fuel, els for each $\overline{G_0 (kg/m^2/s)}$ 35-280 20-120 150-300 3-30 50-400	20		
	hybrid rocket engin Prepare a comparat considering a three and a three stage hy stage. You can use System Pure HTPB Paraffin Paraffin/13%Silbal Cryo	e. ive analysis of stage hybrid /brid rocket e the following Propellant GO _x /HTPB GO _x /Wax GO _x /fuel GO _x /CH ₄	of rockets hybrid p rocket engine usin ngine using three table for your and $a(m^{1+2n}kg^{-n}s^{n-1})$ $2.85x10^{-5}$ $9.1x10^{-5}$ $9.4x10^{-5}$ $4.14x10^{-5}$	used in a m propulsion syng one single different fue alysis. <u>n</u> 0.681 0.690 0.766 0.830	ulti-stage ystems, e type of fuel, els for each $\overline{G_0 (kg/m^2/s)}$ 35-280 20-120 150-300 3-30	20		

	Fuel	HT	PB H	ITPB	Paraffin	
Oxidizer	density [kg/m ³]	114	41	1141	1141	
	nsity [kg/m ³]	91	9	919	940	
	l ratio (XO2=1.05) 3.	2	3.2	3.61	
	c Impulse [s]	30	0	300	300	
	a V [m/s]	26	34 2	2634	2634	
	$[m/s^2]$	9.	8	9.8	9.8	
2010 IV 00 00	mber pressure [N/	$(m^2]$ 4.5*1	0^6 4.5	5*10^6	4.5*10^6	
	ession constant	0.000	0.0000000000000000000000000000000000000	000039	0.000091	
	flux component	0.5	i3 (0.681	0.69	
	flux [kg/(m ² xs)]	25	2500 2500		250	
	ing time [s]	56.	56.81 56.81		56.81	
Burning	velocity [m/s]	0.0	0.006 0.008		0.004	
Outer diameter	of oxidizer tank [m] 3.1	3.187 1.97		1.177	
Length of o	oxidizer tank [m]	3.1	3.187		1.177	
Outer diamet	ter of fuel tank [m]] 1.0	1.027 1.		0.719	
Inner dian	Inner diameter of fuel [m]		0.402		0.319	
Length of fuel [m] Outer diameter of stage engine [m] Total length of stage [m]		8.7	8.747		0.82	
		m] 3.1	93 1	.976	1.3	
		22.	94 1	1.299	8.3	
Lo	Load [kg] Traction [N] Fuel flow [kg/s] Oxidizer flow [kg/s] Fuel mass [kg]		30 4	4827	1000	
Tra			0^6 2.8	8*10^5	6.0*10^4	
Fuel				3.461	4.428	
Oxidize			317.746 75.07		15.985	
Fuel			541 1333		251.555	
Oxidizer mass [kg]		180	18050 4265		908.113	
parameters.	commended des	OR		and con	ibustion	
Stages	Mass of	Mass of	Payload ma	ee Int	velocity	
Stages	propellant (Kg)	structure (Kg)	(Kg)	ss Jet (m	•	
I (Booster)	10000	1700	50		2250	
II	4500	800			2450	
TTT	1900	350			2550	
III	1900	.)				

a) Velocity increment for each stages b) total velocity require for initial thrust

c) Propellant mass fraction d) Payload mass fraction e) structural mass fraction at each

stages f) initial acceleration required if time of burning of booster rocket is 50 sec.

Q 2	What is an Anti-satellite targeting missile? Analyze the propulsion systems used in these missions and briefly explain the Kessler syndrome proposed by Donald Kessler for LEO.	20	CO4