Name: Enrolment No:			
Cours Progr Cours Instru	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022 Finite Element Method m: B.Tech ADE Code: MECH4007P ions: Attempt all questions. Assume any data if necessary.	ster Mark	
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q 1	Explain the steps of finite element method.	4	CO1
Q 2	Obtain the connectivity matrix for the truss structure shown below,	4	CO1
Q 3	Determine the sample point and its weight in one point formula of numerical integration.	4	CO1
Q 4	Explain isoperimetric mapping.	4	CO1
Q 5	Determine the transformation matrix for the truss element shown in Figure.	4	CO1
SECTION B			

(4Qx10M= 40 Marks)

Q 6	If $\mathrm{k}=50 \mathrm{kN} / \mathrm{m}, F_{1}=5 \mathrm{kN}$, and $F_{2}=10 \mathrm{kN}$, compute the displacement of each trolley.	10	CO3
Q 7	For the plane truss supported by spring at node 1 , determine the individual elemental stiffness matrix of each element. Let $\mathrm{E}=210 \mathrm{GPa}$ and $\mathrm{A}=5 \times 10^{-4}$ m^{2} For the plane truss supported by spring at node 1 , determine the individual elemental stiffness matrix of each element. Let $\mathrm{E}=210 \mathrm{GPa}$ and $\mathrm{A}=5 \times 10^{-4}$ m^{2}	10	CO3

Q 8	Determine the displacement of a fixed bar due to its own weight as shows in Fig, using Rayleigh-Ritz method. Take a $2^{\text {nd }}$ order polynomial as approximate displacement function. Take $E=1 \mathrm{GPa}, A=1 \mathrm{~m}^{2}, \rho=2$ $\mathrm{kg} / \mathrm{m}^{3}$ and $l=2$.	10	CO3
Q 9	Determine the sampling points and its weights in two-point formula of numerical integration and evaluate the integral, $\int_{-1}^{1} \int_{-1}^{1}\left(r^{3}-1\right)\left(s^{2}+s\right) \mathrm{d} r \mathrm{~d} s$	10	CO1
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	Determine the inverse of the Jacobian matrix for the rectangular plate element shown in Figure. The coordinates are in the units of meters.	20	CO 2
Q 11	Determine the $[\mathbf{B}]$ matrix in natural coordinates for the plate element shown in Figure. The coordinates are in units of meters.	20	CO2

