

Semester : VI

Max. Marks: 100

: 03 hrs

Time

Name:

Enrolment No:

Course Name

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2022

Programme Name: B.Tech. Mechatronics Engineering

: Advanced Robotics

Course Code : MEPD3009P

No. of page(s) : 1

Instructions: Assume any missing data.

SECTION A (20 marks)

S. No.		Marks	CO
Q 1	Explain why homogeneous coordinates are required in modeling of robotic manipulators.	4	CO1
Q 2	Discuss the procedure of assignment of X-axis in DH representation.	4	CO1
Q 3	Explain why DH convention does not give unique frame assignment for a given manipulator.	4	CO2
Q 4	Discuss the significance of studying the manipulator differential motion.	4	CO3
Q 5	Discuss the singularities of a manipulator. Explain briefly.	4	CO2
	SECTION B (40 marks)		
Q 6	Find out the DH parameters for a 3 DoF articulated robot.	10	CO2
Q 7	Explain the manipulator control problem for manipulators	10	CO3
Q 8	Show that the overall differential transformation due to three differential rotations of δx , δy , δz about $x-$, $y-$, $\delta z-\dot{c}$ axes, respectively, is independent of the order in which rotations are made.	10	CO3
Q 9	Explain the significance of Jacobian in for manipulators. OR Differentiate between the following (i) Forward and inverse kinematics (ii) Forward and inverse dynamics SECTION-C (20 marks)	10	CO1
Q 10	Derive the Jacobian matrix for a 3 DoF articulated robot.	20	CO5

Q 11	Formulate the equations of motion for a two-link articulated planar manipulator using the approach of Lagrangian dynamics.		
	OR	20	CO4
	Derive the expression for Lagrangian for an <i>n</i> -DoF manipulator using Euler-Lagrange approach.		