Name: Enrolment No:			
Course: Finite Element Analysis Semester : $\mathbf{6}^{\text {th }}$ Program: B.Tech Mechanical Time $: 03 \mathrm{hrs}$ Course Code: MECH4023P Max. Marks: $\mathbf{1 0 0}$ Instructions: Attempt all questions. Assume any data if required.			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Explain the difference between finite element and finite difference method.	4	CO1
Q 2	Explain the significance of shape function and its continuity requirement.	4	CO1
Q 3	Describe the penalty approach of applying boundary conditions.	4	CO1
Q 4	Explain Galerkin's approach in finite element method.	4	CO1
Q 5	Obtain the connectivity matrix for the discretized domain shown below,	4	CO1
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx} 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q 6	Foe the system shown in Figure, determine the nodal displacements.	10	CO 3
Q 7	For the plane truss, determine the individual elemental stiffness matrix of each element. Let $\mathrm{E}=210 \mathrm{GPa}$ and $\mathrm{A}=5 \times 10^{-4} \mathrm{~m}^{2}$	10	CO3

	OR For the plane truss, determine the individual elemental stiffness matrix of each element. Take $\mathrm{P}=10 \mathrm{kN}$ and $\mathrm{L}=1 \mathrm{~m}$. Let $\mathrm{E}=210 \mathrm{GPa}$ and $\mathrm{A}=5 \times 10^{-4} \mathrm{~m}^{2}$		
Q 8	A rod shown in figure is subjected to a body force $f=1 \mathrm{~N} / \mathrm{m}^{3}$. Take $E=1$ $\mathrm{N} / \mathrm{m}^{2}, \mathrm{~A}=1 \mathrm{~m}^{2}$ and $L=3 \mathrm{~m}=$ length of the rod. Point load applied is $\mathrm{P}=1 \mathrm{~N}$. Assuming a displacement field as $u=a_{1}+a_{2} x$, use Rayleigh Ritz method to find the displacement field.	10	CO3

Q 9	Determine the sampling points and its weights in two-point formula of numerical integration and evaluate the integral, $\int_{-1}^{1} \int_{-1}^{1}\left(r^{2}+2 r s+s^{2}\right) \mathrm{d} r \mathrm{~d} s$	10	CO1
	$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$		
Q 10	Determine the $[\mathbf{B}]$ matrix in natural coordinates for the plate element shown in Figure. The coordinates are in units of meters.	20	CO2
Q 11	Determine the inverse of the Jacobian matrix for the rectangular plate element shown in Figure. The coordinates are in the units of cm .	20	CO2

