Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Power System - II Semester: VI

Program: B. Tech Electrical Engineering Time : 03 hrs.
Course Code: EPEG 3011 Max. Marks: 100

Instructions:

SECTION A (50x4M=20Marks)

	(5QX4M=20Marks)			
S. No.		Marks	CO	
Q 1	For the network shown below in Figure 1, determine the bus admittance matrix. $ $	4	CO1	
Q 2	Define STATCOM and its role in power system.	4	CO4	
Q 3	Two generating units 300 MW and 400 MW have governor speed regulation of 6% and 4% respectively from no load to full load. Both the generating units are operating in parallel to share a load of 600 MW. Assuming free governor action, the load shared by the larger unit is MW?	4	CO3	
Q 4	A four-pole, 60-Hz synchronous generator has a rating of 200 MVA, 0.8 power factor lagging. The moment of inertia of the rotor is 45,100 kg.m². Determine M and H.	4	CO2	
Q 5	Explain with a suitable diagram the working and advantages of Thyristor controlled series compensation.	4	CO4	

	SECTION B			
(4Qx10M=40 Marks)				
Q 6	Explain load frequency and excitation control with the help of a suitable block diagram.	10	CO3	
Q 7	(a) Explain the role of power angle curve in synchronous machine.(b) What is the role of AVR in improving the stability?	5+5	CO2	
Q 8	What is 'critical clearing angle'? Derive the expression of critical clearing angle.	10	CO2	
Q 9	What is excitation system? Explain in detail how it can be used to regulate the terminal voltage of the generator?	10	CO4	
	SECTION-C			
	(2Qx20M=40 Marks)			
Q 10	For the system of Figure 2, find the voltage at the receiving bus at the end of the first iteration. Load is $2+j0.8$ pu. Voltage at the sending end (slack) is $1+j0$ pu. Line admittance is $1.0-j4.0$ pu. Transformer Reactance is $j0.4$ pu. Off-nominal turns ratio is $1/1.04$. Use the GS Technique. Assume $V_R = 1 \ge 0^0$.	20	CO4	
Q 11	Figure 2 The input-output curve of a coal-fired generating unit (with a maximum			
	output of 450MW) is given by the following expression: H(P) = 120 + 6.8P + 0.0035P ² [MJ/h] If the cost of coal is 1.37 \$/MJ, calculate the output of the unit when the system marginal cost is: a) 14 [\$/MWh] and b) 20 [\$/MWh] OR		CO5	
	The fuel-cost functions in \$/h for two 600 MW thermal plants are given by $C_1 = 300 + 5.0P_1 + 0.006P_1^2$ $C_2 = 400 + \beta P_2 + \alpha P_2^2$ where P ₁ and P ₂ are in MW. Determine: (a) The incremental cost of power λ is \$10/MWh when the total power demand is 450 MW. Neglecting losses, determine the optimal generation of each plant. (b) The incremental cost of power λ is \$12/MWh when the total power	20	CO5	
	demand is 1100 MW. Neglecting losses, determine the optimal generation of each plant. (c) From the results of (a) and (b) find the fuel-cost coefficients β and α of the second plant.			