
Name: Enrolme	ent No: UNIVERSITY WITH A PURPOSE	• • • = •				
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022						
Course Course Nos. of Instructi	n Name: B. Tech. (CERP)SemesterName: Process ControlTimeCode: CHCE 3033Max. Mpage(s): 03	: 3 ho arks: 100				
	SECTION A (6X10=60 marks)					
S. No.		Marks	CO			
1	<i>Identify</i> the following differential equations using Laplace Transforms. a) $\frac{dx}{dt} - x = 2 \sin t x 0 = 0$ b) $\frac{d^2x}{dt^2} + \frac{dx}{dt} + x = 1x 0 = x' 0 = 0$	10	CO1			
2	A thermometer having first order dynamics with a time constant of 1 min is placed is a temperature bath at 100 deg F. After the thermometer reaches steady state, it is suddenly placed in bath at 100 deg F at $t = 0$ and left there for 1 min after which it is immediately returned to the bath at 100 deg F. <i>Indicate</i> the thermometer reading at $t = 0.5$ min and at $t = 2.0$ min	10	CO2			
3	The overall transfer function of the process is given by $\frac{16}{1.5s^2+2.4s+6}$. If a ster change of magnitude 6 is introduced into the system, <i>Illustrate</i> 1. Overshoot 2. Period of oscillation 3. Rise time 4. Ultimate value 5. Maximum value of response	p 10	CO3			
4	a) Reduce the given block diagram and find Y/X	5	CO4			

	OR		
	Plot the root locus <i>diagram</i> for the open loop transfer function $\frac{K}{s(s+3)(s^2+2s+2)}$		
8	With neat diagrams and appropriate process and block diagrams <i>explain</i>a) Cascade control systemb) Ratio control system	20	CO6