Name: Enrolment No:				
Semest	UNIVERSITY OF PETROLEUM End Semester Examina e: Fiber Optic Communications er: VI m: B.Tech. ECE		hrs.	
Course Code: ECEG 3040 Max. Ma		arks: 100		
Instruc	ctions: All diagrams are to be drawn by pencil.			4 20
	SECTION A Answers all Qu	restions	5Q:	$\mathbf{x4} = 20$
S. No.			Marks	CO
1.	A step index fiber has normalized frequency 25 a core radius is 25µm, determine the numerical aper	-	4	CO1
2.	Determine the phase change when the light ray get the refractive index n=1.0 and incident angle is 45		4	CO2
3.	Write about classification of Fiber optic sensors in	the field of instrumentation.	4	CO3
4.	A trigonometrical measurement is performed in or aperture of a step index fiber. The screen is position face. When illuminated from a wide angled visible pattern size is 6.2 cm. Calculate the approximate m	oned 10.0cm from the fiber end e source the measured output	4	CO3
5.	Write about SDH architecture in the Optical fiber	Network.	4	CO4
SECTION B			4Qx	10= 40
6.	 (a)Determine the maximum possible core radius n₁=1.465 and n₂=1.46 if the waveguide is to support of 1250nm? (b) Explain in the terms Intermodal and Intramodal 	rt only one mode at a wavelength	6+4	CO1
7.	A 2 km length of multimode fiber is attached measurement. The measured output voltage from km fiber length is 2.1V at a wavelength of 0.85µr to leave a 3 m length the output voltage incr	the photo-receiver using the full 2 n. When the fiber is then cut back	10	CO3

	attenuation per kilometer for the fiber at a wavelength of 0.85µm and estimate the accuracy of the result		
8.	 a) GaAs has a bandgap energy of 1.43 eV at 300 K. Determine the wavelength above which an intrinsic photodetector fabricated from this material will cease to operate (b)Describe the structure of edge emitting semiconductor light emitting diode. 	6+4	CO
9.	a)Explain different Splicing techniques with neat sketch.	10	СО
	SECTION-C	2Q	x20=4
10	Write any two questions		
10.	(a)A glass fiber exhibits material dispersion given by $[\lambda^2 (d^2n_1/d\lambda^2)]$ of 0.02 5.		
	Determine. the material dispersion parameter at a wavelength of 0.85 μ m. and		
	estimate the rms pulse broadening per kilometer for a good LED source with an rms	12+8	CO
	spectral width of 20 nm at this wavelength.b)Describe the working Fabry Perot cavity sensor which measures strain or force .		
11.	b)Describe the working rabiy refot cavity sensor which measures strain of force.	14+6	
11.	(a) Two step index fibers have the following characteristics:	14.0	CO
	A core refractive index of 1.500 with a relative refractive index difference of 0.2%		
	and an operating wavelength of $1.55 \ \mu\text{m}$.		
	A core refractive index the same as (a) but a relative refractive index difference of		
	3% and an operating wavelength of 0. 82 μ m.		
	Estimate the critical radius of curvature at which large bending losses occur in both		
	cases.		
	(b) Describe the amplification process of Erbium Doped Fiber Amplifiers.		
	(b) Describe the amplification process of Erofum Doped Fiber Amplifiers.		
	(c) A silicon <i>p-i-n</i> photodiode incorporated into an optical receiver has a quantum		
	efficiency of 60% when operating at a wavelength of $0.9\mu m$. The dark current in the		
	device at this operating point is 3 nA and the load resistance is 4 k Ω . The incident		

optical power at this wavelength is 200 mW and the post detection bandwidth of the	
receiver is 5 MHz. Compare the shot noise generated in the photodiode with the	
thermal noise in the load resistor at a temperature of 20 °C.	
(d) Describe the structure of Distributed feedback LASER	