Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Electromagnetic Waves & Antennas Program: ASE+AVE Course Code: ECEG 3014 Semester: VI Time : 03 hrs. Max. Marks: 100

## **Instructions:**

| SECTION A<br>(5Qx4M=20Marks) |                                                                                                                                                                                                                                                               |       |      |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|--|
| S. No.                       |                                                                                                                                                                                                                                                               | Marks | CO   |  |
| Q 1                          | Write down the formulations for Gauss's Law, Faraday's Law and Ampere's Law                                                                                                                                                                                   | 4     | CO1  |  |
| Q 2                          | Distinguish plane wave in free space and conductor                                                                                                                                                                                                            | 4     | CO2  |  |
| Q 3                          | Describe the power density formulations for wave propagation in space                                                                                                                                                                                         | 4     | CO3  |  |
| Q 4                          | Discuss Isotropic antenna and the radiation pattern                                                                                                                                                                                                           | 4     | CO4  |  |
| Q 5                          | Write short notes on Ground Wave attenuation                                                                                                                                                                                                                  | 4     | CO4  |  |
|                              | SECTION B<br>(4Qx10M= 40 Marks)                                                                                                                                                                                                                               |       |      |  |
| Q 6                          | Find the electric field strength at operating wavelength of 300m, when<br>transmitter and receiver antennas are of heights 10m and 8m<br>respectively and are 15km apart. Assume that antenna current is 10mA.                                                | 10    | CO2  |  |
| Q 7                          | The power transmitted from a transmitter is 10kw, and antenna gain is 40dB. Find out the power density at any point that is located at the distance of 10km away from transmitter.                                                                            | 10    | CO3  |  |
| Q 8                          | If the power transmitted from a transmitter is 20kW and gains of<br>transmitting and receiving antennas are 50dB and 20dB respectively<br>then calculate the maximum power received at a distance of 10km over<br>free space for 3GHz transmission frequency. | 10    | CO 4 |  |
| Q 9                          | A sky wave of frequency 30MHz is incident on E-layer at an angle of 30 degrees. Find out the angle of refraction if the electron density in E-Layer is $500000 \text{ e/m}^3$ .                                                                               | 10    | CO4  |  |
|                              | SECTION-C<br>(2Qx20M=40 Marks)                                                                                                                                                                                                                                |       |      |  |

| Q 10 | Deduce the relationship for Maxwell Equation and Helmholtz equation<br>with the consideration of all boundary conditions and Poynting theorem | 20 | CO1  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------|----|------|
| Q 11 | Derive the refractive index for ionosphere. Deduce relationship for plasma frequency, critical frequency and MUF.                             | 20 | CO 3 |