Name:

Q 7

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2022

Course: Flight Dynamics and Control

Program: B.Tech ASE+AVE Course Code: ASEG 3015 Semester: VI

10

CO₃

Time : 03 hrs.

Max. Marks: 100

Instructions: Use graph sheets for root locus plot.

SECTION A
(5Qx4M=20Marks)

Q 1 Derive rigid body equation of yawing motion of aircraft. Q 2 Compare different types of Inputs that can be used to analyse dyamic response fo aircraft. Q 3 Differentiate between open and closed loop and control system with 2 examples for each Q 4 Characterize long period motion of aircraft. Q 5 Why marker beacons are used in glide slope beams in ILS system.	S. No.		Marks	CO
response fo aircraft. Q 3 Differentiate between open and closed loop and control system with 2 examples for each Q4 Characterize long period motion of aircraft.	Q 1	Derive rigid body equation of yawing motion of aircraft.	4	CO1
examples for each Q4 Characterize long period motion of aircraft.	Q 2		4	CO2
	Q 3	1	4	CO3
Q5 Why marker beacons are used in glide slope beams in ILS system.	Q4	Characterize long period motion of aircraft.	4	CO3
	Q5	Why marker beacons are used in glide slope beams in ILS system.	4	CO4

SECTION B (4Qx10M= 40 Marks)

Show that characteristics root for spiral motion is given by $\lambda_{\text{spiral}} = \frac{L_{\beta} N_r - L_r N_{\beta}}{L_{\beta}}$ Hint: $\begin{bmatrix} \Delta \dot{\beta} \\ \Delta \dot{p} \\ \Delta \dot{r} \\ \Delta \dot{\phi} \end{bmatrix} = \begin{bmatrix} \frac{Y_{\beta}}{u_0} & \frac{Y_p}{u_0} & -\left(1 - \frac{Y_r}{u_0}\right) & \frac{g \cos \theta_0}{u_0} \\ L_{\beta} & L_p & L_r & 0 \\ N_{\beta} & N_p & N_r & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta \beta \\ \Delta p \\ \Delta r \\ \Delta \phi \end{bmatrix}$ 10 CO1

Given the Characteristics equation of aricraft is represented by

	$s^3 + 3s^2 + 3s + 1 + k$				
	Find the value of k for which the aircraft is stable.				
Q 8	Analyze the stability of the system using Root Locus plot where $G(s)H(s)=\frac{K(s+1)}{s(s+2)(s+3)}$ Find no. of poles and zero, starting and ending point of poles, no. of asymptotes(tangent lines) and their respective angle, intercepts (origin) of angles, crossover (points if any)	10	CO3		
Q 9	Explain different functions with the help of Block diagram of ILS (Instrument Landing System).	10	CO4		
SECTION-C					
	(2Qx20M=40 Marks)				
Q 10	Derive the stability derivatives C_y , C_{nr} , C_z C_{mq} and $C_{m\dot{\square}}$	20	CO2		
Q 11	A unity feedback system with a forward transfer function $G(s)=80/s(s+2)$ has a rate feedback transfer function Hs)=as a) Determine the damping ration and natural frequency of oscillations in the derivative feedback $(a=0)$. b) Determine the value of a such that the damping ratio is 0.7.	20	CO3		