Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course:Flight Mechanics IIProgram:B.Tech ASECourse Code: ASEG4001

Semester: VIth Time 03 hrs. Max. Marks: 100

Instructions: Assume the necessary data if not given. Use suitable plots wherever required.

SECTION A (5*4 =20)				
S. No.		Mark s	CO	
Q 1	Define the following terms. (a) Neutral point (b) Static margin.	4	CO1	
Q 2	Graphically represent a system, which is statically stable but dynamically unstable.	4	CO1	
Q 3	What is the purpose of a dorsal fin and how is it achieved	4	CO2	
Q 4	Define weathercock effect and dihedral effect in short.	4	CO3	
Q 5	Whether phugoid mode is a long period mode or short period mode. How to verify.	4	CO5	
Q 6	SECTION B (4*10=40)			
~	An airplane has the following characteristics. $C_{L\alpha w} = 0.080 \text{ deg}^{-1}, C_{L\alpha t} = 0.05 \text{ deg}^{-1}, \text{ d}C_L/d\delta e = 0.042, C_{h\alpha t} = -0.004 \text{ deg}^{-1}, C_{h\delta t} = -0.005, i_w = 0, \alpha_{0L} = -2^{0}, i_t = -1^{0}, \epsilon = 0.5 \alpha, S_t = 0.25S, l_t = 3c, W/S = 1500 \text{ N/m}^2, \text{ a.c.}$ location = 0.25c, $\eta = 1.0$, $(C_{m\alpha})_{f,n,p} = 0.32 \text{ rad}^{-1}$. Obtain i) Stick-fixed neutral point ii) Stick-free neutral point	10	CO2	
Q 7	Derive and discuss the variation of stick force with velocity for different tab deflections. Use following figure for reference. Pull F(N) F(N) Pull $\frac{100}{F(N)}$ $\frac{100}{V_{trim2}}$ $\frac{100}{V_{trim1}}$ $\delta_t = 0$ $\delta_t = 0$	10	CO3	

Q 8	An airplane with the following characteristics is coming in to land at sea level at a speed of 1.2 times the stalling speed. What would be the amount of rudder deflection required (δr) if the airplane encounters crosswind of 10 m /s? Additional parameters are given as, W/S = 1500 N/m ² , V _v = 0.05, C _{L \alpha v} = 2.87 rad ⁻¹ , C _{n\beta} = 0.071 rad ⁻¹ , C _{Lmax} = 1.8, η_v = 1.0, τ rudder = 0.5.	10	CO4
Q 9	Determine the orientation of an airplane for the "first rotation". Explain using figures; also write the appropriate coordinate equation in matrix form for the same.	10	CO5
	SECTION-C (2*20=20)		
Q 10	Explain how adverse yaw is brought about in an airplane. (5 Marks) The wind tunnel tests on an airplane model indicate that full aileron deflection to right introduces an adverse yaw causing $C_n = -0.008$. How many degrees of rudder must be applied to keep the sideslip zero during the roll? Given that $S = 16.4 \text{ m}^2$, $S_v = 2.1 \text{ m}^2$, $l_v = 5.5 \text{ m}$, $b = 9.8 \text{ m}$, $\eta_v = 0.95$, $C_{Lav} = 0.045 \text{ deg}^{-1}$, $\tau_{rudder} = 0.5$. (15 Marks)	20	CO 4
Q 11	 a) The roots of a longitudinal stability quartic are - 2.57 ± i 2.63; +0.02 and - 0.26. Discuss the types of motions indicated by each mode. What would be the final motion of the airplane? b) Derive the linearized longitudinal equation of motion for ΔX using small disturbance theory. 	20	CO5