Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course:Flight Mechanics IIProgram:B.Tech ASECourse Code: ASEG4001

Semester: VIth Time 03 hrs. Max. Marks: 100

Instructions: Assume the necessary data if not given. Use suitable plots wherever required.

S. No.		Mark s	CO
Q 1	Define restoring tendency and floating tendency of an airplane. Also, discuss the expressions involved.	4	CO2
Q 2	Why neutral point is called as aerodynamic center of the entire airplane. Justify	4	CO1
Q 3	Discuss about the forward and rearward limits of CG movement in an airplane	4	CO2
Q 4	Define sweepback effect and dihedral effect in short.	4	CO3
Q 5	Whether roll subsidence is a long period mode or short period mode. How to verify.	4	CO5
	SECTION B (4*10=40)		
Q 6	Derive and discuss the tail contribution towards static longitudinal stability.	10	CO2
Q 7	Derive the expression of tail effectiveness .what is the influence of the elevator on the $Cm\alpha$ curve. Use proper plots to explain.	10	CO3
Q 8	An airplane with the following characteristics is coming in to land at sea level at a speed of 1.2 times the stalling speed. What would be the amount of rudder deflection required (δr) if the airplane encounters crosswind of 10 m /s? Additional parameters are given as, W/S = 1500 N/m ² , V _v = 0.05, C _{L av} = 2.87 rad ⁻¹ , C _{nβ} = 0.071 rad ⁻¹ , C _{Lmax} = 1.8, η_v = 1.0, τ_{rudder} = 0.5.	10	CO4
Q 9	Determine the orientation of an airplane for the "first rotation and second rotation". Explain using figures; also write the appropriate coordinate equation in matrix form for the same.	10	CO5

Q 10	Explain how adverse yaw is brought about in an airplane. (5 Marks) The wind tunnel tests on an airplane model indicate that full aileron deflection to right introduces an adverse yaw causing $C_n = -0.008$. How many degrees of rudder must be applied to keep the sideslip zero during the roll? Given that $S = 16.4 \text{ m}^2$, $S_v = 2.1 \text{ m}^2$, $l_v = 5.5 \text{ m}$, $b = 9.8 \text{ m}$, $\eta_v = 0.95$, C _{Lav} = 0.045 deg ⁻¹ , $\tau_{rudder} = 0.5$. (15 Marks)	20	CO 4
Q 11	 a) Derive the frequency and damping ratio expression for a long period motion of longitudinal stability. b) Derive the linearized longitudinal equation of motion for ΔM using small disturbance theory. 	20	C05