Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

END Semester Examination, May 2022

Course : Formation Evaluation and Well Testing : VI
Programme : B.Tech., APE GAS : 03 hrs
Course Code : PEALI 3016 : Max Marks : 100

O	amme		Tech, AL	JAB					111116		100	
	se Code		EAU 3016						Max. Ma	arks : 1	100	
	of page		7									
	uctions	Assum	e any data n		TONI 1 (16		<u> </u>				7.7.1	
SNo					ION A (40	_					Marks	CO
Q1		the typ I mud fi		e resistivi	ty condition	n in water	-bearing fo	ormation i	nvaded by w	ater	5	CO1
Q 2	Define	Hydrog	gen Index (I	HI). Calcu	late HI of	Calcite wi	th bulk de	nsity of ρ _b	•		5	CO2
	A flow test run on an exploratory well for a period of 75.8 hours suggests the following											
Q 3	data: $k = 100$ md; $\Phi = 0.2$; $C_t = 2 \times 10^{-5}$ psi ⁻¹ ; and $\mu = 0.5$ cp. Estimate the radius of investigation.									s of	5	CO3
Q 4			oilized flow	; b. Absol	ute Open F	Flow (AOI					5	CO4
				S	ECTION F	3 (4Qx10I		rks)				
Q 5	SECTION B (4Qx10M=40 Marks) List various types of acoustic logs and explain with neat diagram the working principle of dual receiver sonic tool. Compare and contrast between formation density and compensated neutron log operation Derive for the diffusivity equation describing the one-dimensional flow of oil with a										10	CO1
Q 6	Comp	are and	contrast bet	ween form	nation dens	sity and co	mpensate	d neutron l	og operation	ı	10	CO2
Q 7	Derive for the diffusivity equation describing the one-dimensional flow of oil with a constant compressibility C_t and viscosity μ through an iso-tropic cartesian porous medium with constant pore volume. OR A well located in a reservoir of 4000 ft is producing oil at a constant rate of 200 STB/Day. The following is the data describing well abd formation: $\mu_o = 0.72$ cp; $Bo = 1.475$ RB/STB; $k = 0.1$ md; $C_t = 1.5*10^{-5}$ /psi; $r_w = 0.5$ ft; $k = 150$ ft; $k = 0.23$; $k = 0$									Day.	10	CO3
Q 8	A Flow-After-Flow test in a gas well reported the following data. $P_{wf}(psig)$ 403 394 379 363 $q_g(MMscf/D)$ 4.288 9.265 14.552 20.177 At each rate, pseudo-steady state was reached. Initial shut-in bottom hole pressure was determined to be 408 psi. Estimate the Absolute Flow Potential (AOF) of the tested well using the empirical plot method. SECTION-C (2Qx20M=40 Marks)										10	CO4
	Α		11.4 4 4						of 250	<u> </u>		
	A pressure build-up test on an oil well producing at a final production rate of 250 STB/D and above the bubble point for an effective time of 13,630 hours with liquid level in well during shut in has resulted in the following data.											
Q 9	 	Δt, hrs	Pws, psia	<i>∆t</i> , hrs	Pws, psia	∆t, hrs	P_{ws} , psia	<i>∆t</i> , hrs	Pws, psia		20	CO3
		0	3534	0.5	3920	7	4344	24	4384			
		0.15	3680	1	4103	8	4350	30	4393			
		0.2	3723	2	4250	12	4364	40	4398			

		0.3	3800	4	4320	16	4373	50	4402			T
		0.4	3866	6	4340	20	4379	60	4405	1		
			<u> </u>		1	I	,	72	4407	1		
	Determine the formation permeability, the skin factor and the effective well bore radius,											
	from the following well and reservoir data $\mu = 0.8$ cp; $\Phi = 0.039$; $B = 1.136$ RB/STB; $C_t =$											
	$17 \times 10^{-6} \text{ psi}^{-1}$; $r_w = 0.198 \text{ ft}$; $r_e = 1,489 \text{ ft}$ (well centered in a square drainage area,											
			r_e is the radi	us of c	circle with s	ame ar	ea); $\rho = 53$ It	om/ft ³ ; A	$_{wb}=0.0218$	sq ft;		
		a = 69 ft.										
			• •	•	_		-dimensional			th a		
	const	ant comp	ressibility, C_t	and vi	• •	_	an iso-tropic _l	orous m	edium.			
	OR											
	A modified Isochronal test in a gas well reported the following data									ا ا		
Q10		Test		\mathbf{D}	Ouration (H	ours)	P_{wf} or P_{ws} (ps	$\operatorname{sig}\left(q_{g}\right)$	MMscf/D)			
		Pretest shutdown 1 st flow 1 st shut-in 2 nd flow 2 nd shut-in 3 rd flow 3 rd shut-in 4 th flow Extended flow (stabilized)			20		1948		-	-		
					12		1784		4.50			
					12		1927		-			
					12		1680		5.60		20	CO4
					12		1911		-			
					12		1546		6.85	1		
					12		1887		-	1		
					12		1355		8.25	1		
					81		1233		8.00	1		

analysis