Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Tribology Program: B.Tech ADE Course Code: MECH3013P

Semester:VI Time : 03 hrs. Max. Marks: 100

Instructions:

	SECTION A		
	(5Qx4M=20Marks)		
S. No.		Marks	CO
Q 1	Explain the stick-slip phenomena.	4	CO1
Q 2	Elaborate effect of adding additives to the lubricants?	4	CO1
Q 3	Differentiate between absorption and adsorption?	4	CO1
Q 4	Draw Striback curve and show the different lubrication mechanism region.	4	CO1
Q 5	Differentiate between static and kinetic coefficients of friction and what is the practical significance of these two terms.	4	C01
	SECTION B		
	(4Qx10M= 40 Marks)		
Q6	Prove the junction growth occurs before the rupture of the asperity.	10	CO2
Q7	Discuss the boundary lubrication mechanism.	10	CO1
Q8	Differentiate two-body and three body abrasive wear. Derive the Rabinowitz equation of abrasive wear.	10	CO2
Q9	Explain the delamination theory of wear.		
	OR Measured kinematic viscosities of the commercial (SM-120) oil at 40 °C and 100 °C are 125.07 mm ² /s and12.48 mm ² /s, respectively. Estimate the VI of the oil.	10	CO3
	SECTION-C		
	(2Qx20M=40 Marks)		
Q 10	Deduce the generalized Reynolds equation of to estimate the fluid film lubrication pressure.	20	CO4
	OR		
	Define elasto-hydrodynamic lubrication mechanism. Duduce the hertz		

	equation of elastic contact.		
Q11	Enlist the surface improvement techniques to make the wear resistant surface. Describe the carbonitriding and carburizing of the surface treatment.	20	CO3