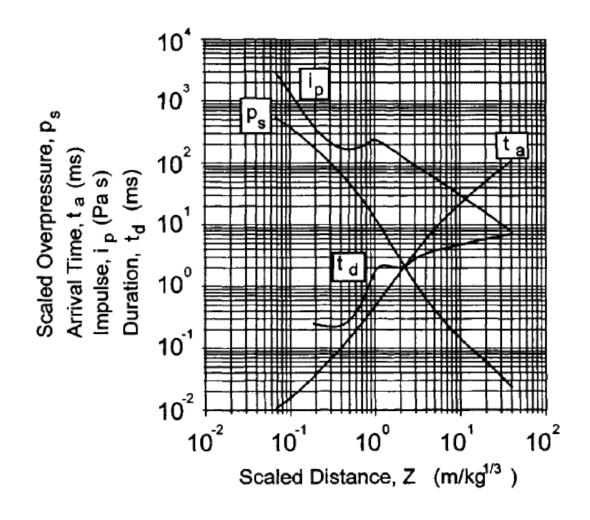
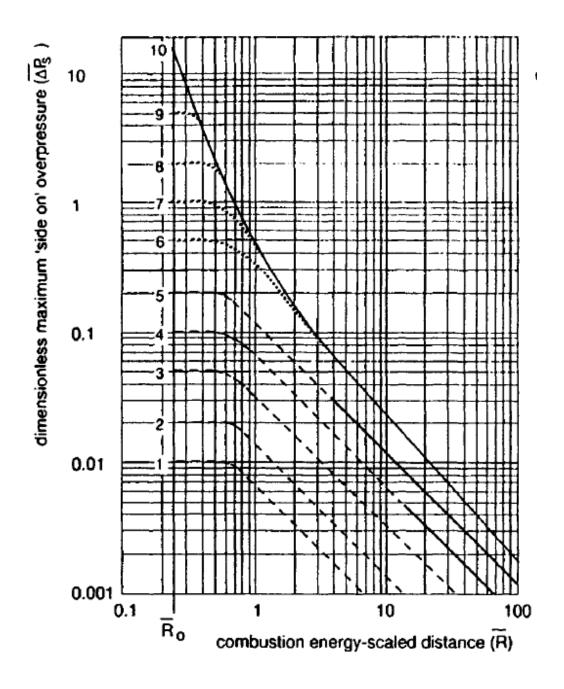
Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Chemical Process Safety Program: B.Tech FSE Course Code: HSFS3008 Semester: VI Time : 03 hrs. Max. Marks: 100


Instructions:


SECTION A (5Qx4M=20Marks)

Q. No.		Marks	СО
Q 1	 a. What is shortstopping? (2M) b. BLEVES are common intype of storage tanks? (1M) c. Silos/hoppers type of storage tank is used for storing (1M) 	4	CO1
Q 2	The best method to store LPG is by the use of mounded storage tanks. Is this statement true? Justify your answer with four points.	4	CO2
Q 3	List the consequences of explosions.	4	CO1
Q 4	 a) Alarms are an example of which safety strategy? (Inherent, Passive, Active, Procedural) b) Processes operationg at pressures below 101325 Pa are a (General process hazard, Special process hazard, Both of these, None of these) c) Ignition control in storage tanks can be done using (Inerting, Avoiding free fall of liquids, Grounding, All of these) d) Which of the following is not a cause of BLEVE? (Mechanical damage and fire engulfment, Fire engulfment, Mechanical damage, Boil over) 	4	CO1
Q 5	Most failure in heat exchangers can be prevented by proper inspection and frequent maintenance. Justify this statement.	4	CO2

	SECTION B		
Q 6	(4Qx10M= 40 Marks) Bring out at least two points each to differentiate between:		
	 a) hazard and risk b) mechanical seal type and sealess pumps. c) minimize and moderate (in the context of inherent safety) d) extraction and stripping e) fixed roof type tanks and floating roof type tanks 	10	CO3
Q 7	Illustrate with the help of a diagram the mechanism of operation of a pin type rupture device. Mention the applications, advantages and disadvantages associated with such a safety system.	10	CO2
Q 8	An accident investigation involving an explosion in a storage facility revealed that the root cause was misinterpreted level readings that lead to overfilling and spillage of a flammable liquid. Design a strategy to ensure such accidents do not occur in the facility again.	10	CO4
Q 9	With the help of a case study give an example of how an accident occurred due to inadequate cooling. OR With the help of a case study give an example of how an accident occurred due to fouling in heat exchangers.	10	CO2
	SECTION-C (2Qx20M=40 Marks)		
Q 10	a) Compute the distance downwind from the following LNG release to obtain a concentration of 5% by volume. Assume ambient conditions of 280 K and 1 atm. The release is continuous.	20	CO3,CO 4
	The following data is available: Spill rate of LNG is 60 Kg/s		
	Spill duration is 3 minutes		
	Wind speed at 10 m above ground is 11.2 m/s		
	LNG vapor density is 1.76 Kg/m ³		
	OR		
	b) Briefly describe any two methods to model VCEs with equations and expressions. (10M)		
	c) Calculate the overpressure that will result at a distance of 15 m due to a vapor cloud explosion involving 15 kg of propane. The propane vapors are confined in dense pipe rack in the industry. The heat of		

	combustion of propane is 50 MJ/Kg. The energy of explosion of TNT is 4.6 MJ/Kg. Use the TNO method. Ambient temperature is 23 C. Molecular weight of propane is 44.1g/mole. (10 M)		
Q 11	Prepare a table giving details of the common failure modes, causes, consequences and design considerations for pumps and reactors. (10+10)	20	CO3

Concentration ration $C_{\rm m}/C_0$	Valid range for $\alpha = \log_{10} \left(\frac{g_0 V_0^{1/3}}{u^2} \right)$	Equation for $\beta = \log_{10} \left[\frac{x}{V_0^{1/3}} \right]$
0.1	$\alpha \leq -0.44$	$\beta = 0.70$
0.1	$-0.44 < \alpha \leq 0.43$	$\beta = 0.26\alpha + 0.81$
0.1	$-0.43 < \alpha \le 1$	$\beta = 0.93$
0.05	$\alpha \leq -0.56$	$\beta = 0.85$
0.05	$-0.56 < \alpha \leq 0.31$	$\beta = 0.26\alpha + 1.0$
0.05	$0.31 < \alpha \leq 1.0$	$\beta = -0.12\alpha + 1.12$
0.02	$\alpha \leq -0.66$	$\beta = 0.95$
0.02	$-0.66 < \alpha \leq -0.32$	$\beta = 0.36\alpha + 1.19$
0.02	$-0.32 < \alpha \le 1$	$\beta = -0.26\alpha + 1.38$
0.01	$\alpha \leq -0.71$	$\beta = 1.15$
0.01	$-0.71 < \alpha \leq 0.37$	$\beta = 0.34\alpha + 1.39$
0.01	$0.37 < \alpha \le 1$	$\beta = -0.38\alpha + 1.66$
0.005	$\alpha \leq -0.52$	$\beta = 1.48$
0.005	$-0.52 < \alpha \leq 0.24$	$\beta = 0.26\alpha + 1.62$
0.005	$-0.24 < \alpha \leq 1$	$\beta = -0.30\alpha + 1.75$
0.002	$\alpha \leq 0.27$	$\beta = 1.83$
0.002	$0.27 < \alpha \leq 1$	$\beta = -0.32\alpha + 1.92$
0.001	$\alpha \leq -0.10$	$\beta = 2.075$
0.001	$-0.10 < \alpha \le 1$	$\beta = -0.27\alpha + 2.05$

TABLE 2.16. Equations Used to approximate the Curves in the Britter–McQuaid Correlations Provided in Figure 2.42 for Puffs

Concentration ration $C_{\rm m}/C_0$	Valid range for $\alpha = \log_{10} \left(\frac{g_0^2 q_0}{\mu^5} \right)$	Equation for $\beta = \log_{10} \left[\frac{x}{(q_0/u)^{1/2}} \right]$
0.1	$\alpha \leq -0.55$	$\beta = 1.75$
0.1	$-0.55 < \alpha \leq -0.14$	$\beta = 0.24\alpha + 1.88$
0.1	$-0.14 < \alpha \leq 1$	$\beta = 0.50\alpha + 1.78$
0.05	$\alpha \leq -0.68$	$\beta = 1.92$
0.05	$-0.68 < \alpha \leq -0.29$	$\beta = 0.36\alpha + 2.16$
0.05	$-0.29 < \alpha \leq -0.18$	$\beta = 2.06$
0.05	$-0.18 < \alpha \le 1$	$\beta = -0.56\alpha + 1.96$
0.02	$\alpha \leq -0.69$	$\beta = 2.08$
0.02	$-0.69 < \alpha \leq -0.31$	$\beta = 0.45\alpha + 2.39$
0.02	$-0.31 < \alpha \leq -0.16$	$\beta = 2.25$
0.02	$-0.16 < \alpha \le 1$	$\beta = -0.54\alpha + 2.16$
0.01	$\alpha \leq -0.70$	$\beta = 2.25$
0.01	$-0.70 < \alpha \leq -0.29$	$\beta = 0.49\alpha + 2.59$
0.01	$-0.29 < \alpha \leq -0.20$	$\beta = 2.45$
0.01	$-0.20 < \alpha \leq 1$	$\beta = -0.52\alpha + 2.35$
0.005	$\alpha \leq -0.67$	$\beta = 2.40$
0.005	$-0.67 < \alpha \leq -0.28$	$\beta = 0.59\alpha + 2.80$
0.005	$-0.28 < \alpha \leq -0.15$	$\beta = 2.63$
0.005	$-0.15 < \alpha \le 1$	$\beta = -0.49\alpha + 2.56$
0.002	$\alpha \leq -0.69$	$\beta = 2.60$
0.002	$-0.69 < \alpha \leq -0.25$	$\beta = 0.39\alpha + 2.87$
0.002	$-0.25 < \alpha \leq -0.13$	$\beta = 2.77$
0.002	$-0.13 < \alpha \le 1$	$\beta = -0.50\alpha + 2.71$

TABLE 2.15. Equations Used to Approximate the Curves in the Britter–McQuaid Correlations Provided in Figure 2.41 for Plumes