Name: Enrolment No:		FWD	
\left. UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022 $\right] \quad$ Semester: VI \quad Course Code: ECEG3041			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q 1	Design binomial array with 7 elements and find the array factor.	4	CO3
Q2.	Design yagi-uda antenna with 7 elements.	4	CO4
Q3.	Define radio horizon. Calculate the maximum LOS distance and power received between 2 antennas of gains 25 dB each are placed at a height of 16 m and 10 m above the ground if the communication link is to be established when power of 1 W is transmitted	4	CO5
Q4.	Design rhombic antenna to produce the maximum beam at 17.5 deg .	4	CO4
Q5.	Find the directivity if $\mathrm{U}=$ Uo $\sin (\pi \sin \theta)$ for $\theta=0$ to $\pi / 2$ and $\varnothing=0$ to 2π.	4	CO1
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx10M}=40 \text { Marks }) \end{gathered}$			
Q6	Derive Lorentz gauze condition and explain babinets and Love's principle.	10	CO1
Q7.	Deduce an expression for fmuf for actual and flat earth.	10	CO5
Q8.	Derive the fields radiated by conductor of finite length 'l' carrying the progressive current distribution along the z -axis.	10	CO 2
Q9.	Calculate and plot the radiation pattern of linear end fire side array of 12 elements excited uniformly with spacing of $\lambda / 4$ between the individual elements. Calculate the directivity.	10	$\mathrm{CO3}$
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	Derive the fields radiated by Microstrip patch antenna using the cavity model.	20	CO4
Q11a	Design Tchebyschev array with 5 elements to produce -40 dB down the main lobe maxima. Find the array factor and approximate directivity if the spacing between the elements is $3 \lambda / 8$.	10	$\mathrm{CO3}$
Q11b.	Design a 10 -turn helix to operate in the axial mode. For an optimum design,. Determine the. Circumference (in λ) , pitch angle (in degrees), and separation between turns (in λo), Rr, HPBW and Directivity of the helix.	10	CO2

