Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Metric Spaces & Complex Analysis Program: B.Sc. (Hons.) Mathematics Course Code: MATH 3005

Semester: VI Time : 03 hrs. Max. Marks: 100

Instructions: Attempt all questions.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	CO	
Q 1	Give an example of pseudo metric which is not metric.	4	CO1	
Q 2	Give an example of closed set which is a closed sphere.	4	CO2	
Q 3	Find he value of $\int_{-1+i}^{1+i} z dz$ along the parabola: $x = t$, $y = t$, $-1 \le t \le 1$.	4	CO4	
Q 4	Find the residue of $f(z) = \frac{1}{(z-1)(z+2)^2}$ at $z=1$.	4	CO4	
Q 5	Show that $u(x, y) = \frac{1}{2} \log (x^2 + y^2)$ is harmonic.	4	CO3	
	SECTION B (4Qx10M= 40 Marks)			
Q 6	Find the bilinear transformation which maps the points $z=1, i, -1$ on to the points $w=i, 0, -i$.	10	CO3	
Q 7	If $u-v=(x-y)(x^2+4xy+y^2)$ and $f(z)=u+iv$ is an analytic function of $z=x+iy$, find $f(z)$ in terms of z by Milne Thomson method.	10	CO3	
Q 8	Expand $f(z) = \frac{z}{(z-1)(z-3)}$ in the region: i) $ z < 1$ ii) $1 < z < 3$.	10	CO4	
Q 9	Show that if $f(z)$ is an analytic function and $f'(z)$ is continuous at each point with in and on the closed curve c , then $\oint_{c} f(z) dz = 0$. OR Evaluate $\oint_{c} \frac{1}{z \sin Z} dz$ where C is the triangle with vertices (0, 1), (2, -2), (7, 1).	10	CO4	

SECTION-C (2Qx20M=40 Marks)					
	 b) Let (X,d) be a metric space and let E be a connected subset of X such that E ⊂ A ∪ B when A and B are separated subsets of X. Prove that either E ⊂ A or E ⊂ B. 	20	CO2		
Q 11	Using complex variable techniques, evaluate the integral $\int_{0}^{2\pi} \frac{\sin^{2} \theta}{a + b \cos \theta} d\theta.$				
	OR	20	CO4		
	Using complex variables, evaluate the real integral $\int_{0}^{\infty} \frac{\cos 3x}{(x^{2}+1)(x^{2}+4)} dx.$				