Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Classical Dynamics Semester: VI Program: B.Sc [Physics] Course Code: PHYS3010D

Time : 03 hrs. Max. Marks: 100

Instructions:

- All questions are compulsory (Q9 and Q10 have an internal choice).
- Scientific calculators can be used for calculations

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO	
Q 1	Determine the number of degrees of freedom in the following cases [i] The bob of a simple pendulum oscillating in a plane [ii] Dumbbell moving in a space	4	CO1	
Q 2	Write the Lagrange's equation and Hamilton principle.	4	CO1	
Q 3	An inextensible string of negligible mass hanging over a smooth pully B connects one mass m_1 on a frictionless inclined plane θ to another mass m_2 . Using D'Alembert principle, prove that the masses will be in equilibrium, if $\sin \theta = \frac{m_2}{m_1}$	4	C01	
Q 4	Define generalized coordinates and their significance in classical dynamics.	4	CO1	
Q 5	In the following cases, discuss whether the constraints are holonomic or non-holonomic. Specify the constraint force alsoI. The motion of a body on an inclined plane under gravityII. A bead on a circular wire	4	CO1	
	SECTION B	I		
(4Qx10M= 40 Marks)				

Q 6	Two heavy particles of weight W_1 and W_2 are connected by a light inextensible string and hang over a fixed smooth circular cylinder of radius R, the axis of which is horizontal [Fig]. Find the condition of equilibrium of the system by applying the principle of virtual work.	10	CO1			
Q 7	Define the retarded potential and retarded time. Derive the expression of Lienard-Wiechert potential.	10	CO2			
Q 8	Define the power radiation by the accelerated charge and Derive the Larmor's formula to calculate the total power radiated in all directions	10	CO3			
Q 9	Show that transformation defined by $q=\sqrt{2P}\sin Q$, $p=\sqrt{2P}\cos Q$ is canonical by using the Poisson bracket. OR What is the Doppler effect? Explain the Doppler effect from a four-vector perspective	10	CO3			
	SECTION-C (2Qx20M=40 Marks)					
Q 10	[a] In frame S, two events have the space-time coordinates $(0,0,0,0)$ and $(5c,0,0,3)$, where time coordinates in seconds. Find the space-time interval between them. Calculate the velocity of a frame in which [i] the two events are simultaneous, [ii] the first event occurs 1 sec earlier than the second, [iii] the second event occurs 1 sec earlier than the first What is the limit for the maximum time interval between these events? [b] An excited atom of total mass M, at rest concerning an inertial frame, goes over into a lower state with energy smaller energy. It emits a photon and thereby undergoes a recoil. The frequency of the photon will not be exactly $v=\Delta W/h$, but smaller. Compute this frequency. OR [a] Show that the relativistic form of Newton's second law, when F is	20	CO2			

	$\vec{F} = \frac{md\bar{v}}{dt} \left(1 - \frac{v^2}{c^2}\right)^{-3/2}$ parallel to v is [b] Show that the rest mass of a particle of momentum p and kinetic energy T is given by $m_0 = \frac{p^2 c^2 - T^2}{2T c^2}$		
Q. 11	 [a] Explain Minkowski's four-dimensional formalism, highlighting the significance of the fourth component of momentum and the equation of motion. Explain the space and time like in four-vectors. [b] Calculate the length contraction of a rod moving with a velocity of 0.8c in a direction inclined at 45° to its length. Calculate the percentage contraction of a rod moving with a velocity of 0.9<i>c</i> in a direction inclined at 45° to its length. 	20	CO4