

Q 6	Two heavy particles of weight W_{1} and W_{2} are connected by a light inextensible string and hang over a fixed smooth circular cylinder of radius R , the axis of which is horizontal [Fig]. Find the condition of equilibrium of the system by applying the principle of virtual work.	10	CO1
Q 7	Define the retarded potential and retarded time. Derive the expression of Lienard- Wiechert potential.	10	CO 2
Q 8	Define the power radiation by the accelerated charge and Derive the Larmor's formula to calculate the total power radiated in all directions	10	CO 3
Q 9	Show that transformation defined by $q=\sqrt{2 P} \sin \mathrm{Q}, p=\sqrt{2 P} \cos \mathrm{Q}$ is canonical by using the Poisson bracket. OR What is the Doppler effect? Explain the Doppler effect from a four-vector perspective	10	CO
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \\ \hline \end{gathered}$			
Q 10	[a] In frame S, two events have the space-time coordinates $(0,0,0,0)$ and $(5 c, 0,0,3)$, where time coordinates in seconds. Find the space-time interval between them. Calculate the velocity of a frame in which [i] the two events are simultaneous, [ii] the first event occurs 1 sec earlier than the second, [iii] the second event occurs 1 sec earlier than the first What is the limit for the maximum time interval between these events? [b] An excited atom of total mass M, at rest concerning an inertial frame, goes over into a lower state with energy smaller energy. It emits a photon and thereby undergoes a recoil. The frequency of the photon will not be exactly $v=\Delta W / h$, but smaller. Compute this frequency. OR [a] Show that the relativistic form of Newton's second law, when F is	20	CO2

	parallel to v is $\vec{F}=\frac{m d \bar{v}}{d t}\left(1-\frac{v^{2}}{c^{2}}\right)^{-3 / 2}$ [b] Show that the rest mass of a particle of momentum p and kinetic energy T is given by $m_{0}=\frac{p^{2} c^{2}-T^{2}}{2 T c^{2}}$		
Q. 11	[a] Explain Minkowski's four-dimensional formalism, highlighting the significance of the fourth component of momentum and the equation of motion. Explain the space and time like in four-vectors. [b] Calculate the length contraction of a rod moving with a velocity of 0.8 c in a direction inclined at 45° to its length. Calculate the percentage contraction of a rod moving with a velocity of $0.9 c$ in a direction inclined at 45° to its length.	20	CO 4

