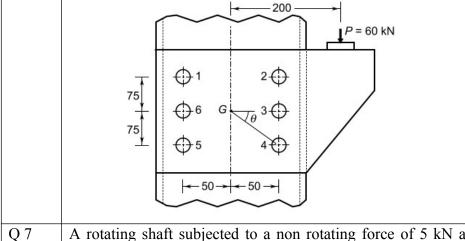
Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

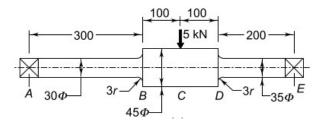
Course: Semester: VI


Program: B.Tech. Mechanical Time : 03 hrs.
Course Code: Design of Machine Elements (MECH 3001) Max. Marks: 100

Instructions: 1. All the questions are compulsory and assume any missing data.

2. Use of Design Data Handbook is allowed.

SECTION A (5Qx4M=20Marks)


S. No.		Marks	СО
Q 1	Briefly summarize the following terminologies:		
	i. Circular Pitch		
	ii. Clearance	4	CO4
	iii. Pitch Circle		
	iv. Addendum		
Q 2	Identify the process involved for the approximate estimation of endurance limit.	4	CO2
Q 3	Identify the different steps involved in design of machine elements.	4	CO1
Q 4	Develop R5 and R10 series.	4	CO1
Q 5	Explain the procedure to minimize the stress concentration in keyways.	4	CO2
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	A bracket is attached to the vertical column by means of six identical	10	CO3
	bolts as shown in fig. It is subjected to an eccentric force of 60 kN at a		
	distance of 200 mm from the centre of the column. The maximum		
	permissible shear for the bolt is 150 N/mm ² . Determine the size of the		
	bolts.		

A rotating shaft subjected to a non rotating force of 5 kN and simply supported between two bearings A & e is shown in fig. The shaft is machined from plain carbon steel 30C8 ($S_{ut} = 500 \text{ N/mm}^2$) and expected reliability is 90% (i.e. reliability factor is .897). The equivalent notch radius at the fillet section can be taken as 3 mm. what is the life of the shaft?

10

CO₂

OR

A forged steel bar 50 mm in diameter is subjected to a reversed bending stress of 250 N/mm². The bar is made of steel 40C8 ($S_{ut} = 600 \text{ N/mm}^2$). Calculate the life of the bar for a reliability of 90%(i.e. $k_c = 0.897$).

Table: Values of coefficients a and b in surface finish factor

Surface finish	а	ь	
Ground	1.58	- 0.085	
Machined or cold-drawn	4.51	- 0.265	
Hot-rolled	57.7	-0.718	
As forged	272	- 0.995 .	

Table: Values of size factor

	Diameter (d) (mm) K _b		
	$d \le 7.5$ 1.00		
	$7.5 < d \le 50$ 0.85		
	d > 50 0.75		
Q 8	Design a rigid type of flange coupling to connect two shafts of 36 mm		
	diameter transmitting 15 kW at 720 rpm. The overload capacity is 1.25		
	times of the rated torque. Select the suitable material for the required	10	CO4
	components.		
Q 9	It is required to design a square key for fixing a pulley on the shaft,		
Q J	which is 50 mm in diameter. The pulley transmits 10 kW power at 200		
		4.0	
	rpm to the shaft. The key is made of steel 45C8 ($Syt = Syc = 380$)	10	CO4
	N/mm2) and the factor of safety is 3. Determine the dimensions of the		
	key.		
	SECTION-C		
	(2Qx20M=40 Marks)		
Q 10	A line shaft received power through a gear and pinion. The pinion is	20	CO4
	connected to an electric motor delivering 30 kW at 1200 rpm, of which		
	20 kW is supplied to a milling machine through a horizontal pulley		
	drive at P1 and the remainder of the power is supplied to a planer		
	through pulley P2 by a vertical belt. The diameters of gear and pinion		
	are 300 mm and 100 mm, respectively. The diameter of pulleys P1 and		
	P2 are 750 mm and 900 mm respectively. The the layout of the shaft is		
	shown in fig below and the ratio of belt tensions in both drives is 2.0,		
	design the shaft on the basis of strength.		
	450 mm - 200 mm - 450 mm - 450 mm		
	150 mm 300 mm 150 mm		
	\bigcap G \bigcap P_1		
	P_2 P_1 ZZZ ZZZ ZZZ ZZZ		
	OR		
	A shaft made of steel receives 7.5 kW at 1440 rpm. A pulley mounted		
	on the shaft has a diameter of 0.4 m and ratio of belt tensions is 3.5.		
	(See figure given below) The teeth on gear of 250 mm pitch circle		
	diameter has a 20° involute profile. Shaft diameter at bearing B1 is 25		
	mm and 20 mm at bearing B2. Taking load factor as 1.4, select the		
	suitable deep-groove ball bearings for B1 and B2, respectively. What is		

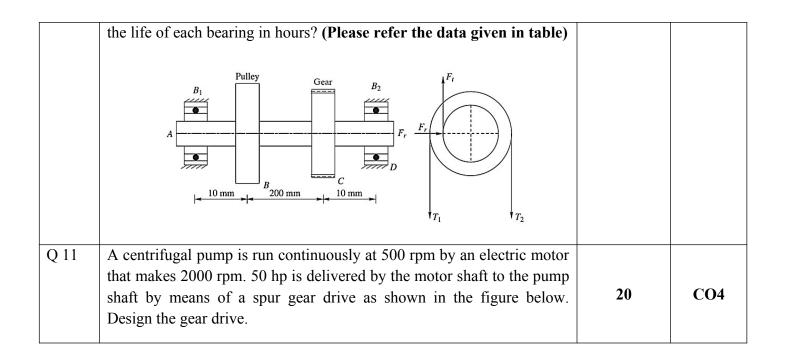


Table: X & Y Factors for single row deep groove ball bearings

$\left(\frac{F_a}{C_0}\right)$	$\left(\frac{F_a}{F_r}\right) \le e$		$\left(\frac{F_a}{F_r}\right) > e$		e
	X	Y	X	Y	
0.025	1	0	0.56	2.0	0.22
0.040	1	0	0.56	1.8	0.24
0.070	1	0	0.56	1.6	0.27
0.130	1	0	0.56	1.4	0.31
0.250	1	0	0.56	1.2	0.37
0.500	1	0	0.56	1.0	0.44

Table Dimensions and static and dynamic load capacities of single-row deep groove ball bearings⁴

	Principal mensions (mm) D B		100000000000000000000000000000000000000	c load gs (N)	Designation
d			С	C_0	
10	19	5	1480	630	61800
	26	8	4620	1960	6000
	30	9	5070	2240	6200
	35	11	8060	3750	6300

Designation	Basic load ratings (N)		Principal dimensions (mm)		
Designation	C ₀	С	В	D	d
61801	695	1430	5	21	12
6001	2240	5070	8	28	
6201	3100	6890	10	32	
6301	4650	9750	12	37	
61802	815	1560	5	24	15
6002	2500	5590	9	32	
6202	3550	7800	11	35	
6302	5400	11400	13	42	
61803	930	1680	5	26	17
6003	2800	6050	10	35	
6202	4500	9560	12	40	
6303	6550	13500	14	47	
6403	11800	22900	17	62	
61804	1500	2700	7	32	20
16404	3400	7020	8	42	
6004	4500	9360	12	42	
6204	6200	12700	14	47	
6304	7800	15900	15	52	
6404	16600	30700	19	72	
61805	1960	3120	7	37	25
16005	4000	7610	8	47	
6005	5600	11200	12	47	
6205	6950	14000	15	52	
6305	11400	22500	17	62	
6405	19600	35800	21	80	
61806	2080	3120	7	42	30
16006	5850	11200	9	55	
6006	6800	13300	13	55	
6206	10000	19500	16	62	
6306	14600	28100	19	72	
6406	24000	43600	23	90	
61807	3000	4030	7	47	35
16007	6950	12400	9	62	
6007	8500	15900	14	62	
6207	13700	25500	17	72	
6307	18000	33200	21	80	
6407	31000	55300	25	100	

Principal dimensions (mm)		Basic load ratings (N)		Designation	
d	D	В	С	Co	
40	52	7	4160	3350	61808
	68	9	13300	7800	16008
	68	15	16800	9300	6008
	80	18	30700	16600	6208
	90	23	41000	22400	6308
	110	27	63700	36500	6408
45	58	7	6050	3800	61809
	75	10	15600	9300	16009
	75	16	21200	12200	6009
	85	19	33200	18600	6209
	100	25	52700	30000	6309
	120	29	76100	45500	6409
50	65	7	6240	4250	61810
	80	10	16300	10000	16010
	80	16	21600	13200	6010
	90	20	35100	19600	6210
	110	27	61800	36000	6310
	130	31	87100	52000	6410
55	72	9	8320	5600	61811
	90	11	19500	12200	16011
	90	18	28100	17000	6011
	100	21	43600	25000	6211
	120	29	71500	41500	6311
	140	33	99500	63000	6411
60	78	10	8710	6100	61812
	95	11	19900	13200	16012
	95	18	29600	18300	6012
	110	22	47500	28000	6212
	130	31	81900	48000	6312
	150	35	108000	69500	6412
65	85	10	11700	8300	61813
	100	11	21200	14600	16013
	100	18	30700	19600	6013
	120	23	55900	34000	6213
	140	33	92300	56000	6313
	160	37	119000	78000	6413

"autah

(Contd)