Name: **Enrolment No:** ## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022 Course: Aircraft Structures-II Program: B. Tech ASE Course Code: ASEG 3013 Semester: VI Time : 03 hrs. Max. Marks: 100 Instructions: i) Assume any suitable value for missing data. ii) Q1-Q3 are True/False SECTION A (5Qx4M=20Marks) | S. No. | (e QA III – 2011 2011 2011 | Marks | CO | |--------|---|-------|-----| | Q 1 | a) For any arbitrary body undergoing mechanical deformation there 15 unknowns. (2 M) b) In case of pure torsion, shear stress is maximum for maximum thickness in thin walled open section beam. (2 M) | 4 | CO1 | | Q2 | a) Bredt – Batho formula is applicable for only of open section beam. (2M) b) Moment of inertia of beam depends on the length of the beam. (2M) | 4 | CO1 | | Q3 | a) The spar of wing carry both bending and shear stress. (2M)b) Neutral axis is coincide with centroid for symmetric and unsymmetrical beam under bending. (2M) | 4 | CO1 | | Q4 | If an I section is idealized as shown in fig. below subjected a bending moment in vertical plane = 10 kNm . The maximum bending stress is? | 4 | CO2 | | Q5 | A square beam cross-section of side = 10 cm and thickness = 0.5 mm is subjected to torque T = 100 kNm , then the value of maximum shear stress is? | 4 | CO2 | |-----|--|----|-----| | | | | | | | SECTION B
(4Qx10M= 40 Marks) | | | | Q 6 | Estimate the maximum shear stress in the channel section shown in fig. below, | | | | | it is subjected to a counterclockwise torque of 10 Nm. G= 25,000 N/mm ² . | | | | | . 1.5 mm | | | | | 2 1 | | | | | | 10 | CO3 | | | 50 mm | | | | | | | | | | 2.5 mm | | | | | | | | | Q7 | Find the angle of twist per unit length in the wing whose cross-section is shown in fig. below, when it is subjected to a orque of 10 kN m. Find also the maximum shear stress in the section. $G = 25,000 \text{ N/mm}^2$. Wall $12 \text{ length} = 900 \text{ mm}$; nose cell area = 20000 mm | | | | | Note: Assume torsional rigidity (GJ) of combined section is equal to the sum | | | | | of torsional rigidity of open and closed section and torque is equal on both open | | | | | and closed section and Torque on open and closed section is same. | 10 | CO3 | | | 1.5 mm 1 2 mm 3 | | | | | 1.5 mm 2 mm 300 mm | | | | | | | | | | 2 4 | | | | Q8 | Derive the formula to determin ethe shear stress distribution in thin wallled | | | | | section. | 10 | CO2 | | | OR | | | | | | ce between
bending stre | • | | - | beam. Derive the formula to | | | |-----|--|--|--|--|---|--|----|-----| | Q9 | change | | nsion of e | | • | It is shown below, determine the operties of element are $E=200$ | | | | | | | dow. | | 30
1 1 1 1
30 | o MPa. | 10 | CO2 | | | | | | | SECTION-
20M=40 M | | | | | Q10 | is shown along sl
The she
A-I = 2. | n in fig. and hear centre of ar modulus 32,000 mm ² | table belowed the section of the section G is the section of s | nd its dime
w. If the w
ion, determane for al
58,000 mm | ensions of
ving box su
mine the sh
ll walls of | a two-cell thin-walled wing box apports a load of 44,500 N acting hear flow distribution. the wing box. The cell areas are | | | | | Wall | ,mm | SS | Boom | Area | | 20 | CO4 | | | 16 | 254 | 1 | 1,6 | 1200 | | | | | | 25 | 406 | 1 | 2,5 | 2000 | | | | | | 34 | 202 | 1 | 3,4 | 645 | | | | | | 12,56
23,45 | 647
775 | 1 | | | | | | | | 23,43 | 773 | <u> </u> | | | | | |