Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2022

Course: Aircraft Structures-II

Program: B. Tech ASE

Course Code: ASEG 3013

Semester: VI

Time : 03 hrs.

Max. Marks: 100

Instructions: i) Assume any suitable value for missing data.

ii) Q1-Q3 are True/False

SECTION A (5Qx4M=20Marks)

S. No.	(e QA III – 2011 2011 2011	Marks	CO
Q 1	 a) For any arbitrary body undergoing mechanical deformation there 15 unknowns. (2 M) b) In case of pure torsion, shear stress is maximum for maximum thickness in thin walled open section beam. (2 M) 	4	CO1
Q2	 a) Bredt – Batho formula is applicable for only of open section beam. (2M) b) Moment of inertia of beam depends on the length of the beam. (2M) 	4	CO1
Q3	a) The spar of wing carry both bending and shear stress. (2M)b) Neutral axis is coincide with centroid for symmetric and unsymmetrical beam under bending. (2M)	4	CO1
Q4	If an I section is idealized as shown in fig. below subjected a bending moment in vertical plane = 10 kNm . The maximum bending stress is?	4	CO2

Q5	A square beam cross-section of side = 10 cm and thickness = 0.5 mm is subjected to torque T = 100 kNm , then the value of maximum shear stress is?	4	CO2
	SECTION B (4Qx10M= 40 Marks)		
Q 6	Estimate the maximum shear stress in the channel section shown in fig. below,		
	it is subjected to a counterclockwise torque of 10 Nm. G= 25,000 N/mm ² .		
	. 1.5 mm		
	2 1		
		10	CO3
	50 mm		
	2.5 mm		
			
Q7	Find the angle of twist per unit length in the wing whose cross-section is shown in fig. below, when it is subjected to a orque of 10 kN m. Find also the maximum shear stress in the section. $G = 25,000 \text{ N/mm}^2$. Wall $12 \text{ length} = 900 \text{ mm}$; nose cell area = 20000 mm		
	Note: Assume torsional rigidity (GJ) of combined section is equal to the sum		
	of torsional rigidity of open and closed section and torque is equal on both open		
	and closed section and Torque on open and closed section is same.	10	CO3
	1.5 mm 1 2 mm 3		
	1.5 mm 2 mm 300 mm		
	2 4		
Q8	Derive the formula to determin ethe shear stress distribution in thin wallled		
	section.	10	CO2
	OR		

		ce between bending stre	•		-	beam. Derive the formula to		
Q9	change		nsion of e		•	It is shown below, determine the operties of element are $E=200$		
			dow.		30 1 1 1 1 30	o MPa.	10	CO2
					SECTION- 20M=40 M			
Q10	is shown along sl The she A-I = 2.	n in fig. and hear centre of ar modulus 32,000 mm ²	table belowed the section of the section G is the section of the s	nd its dime w. If the w ion, determane for al 58,000 mm	ensions of ving box su mine the sh ll walls of	a two-cell thin-walled wing box apports a load of 44,500 N acting hear flow distribution. the wing box. The cell areas are		
	Wall	,mm	SS	Boom	Area		20	CO4
	16	254	1	1,6	1200			
	25	406	1	2,5	2000			
	34	202	1	3,4	645			
	12,56 23,45	647 775	1					
	23,43	773	<u> </u>					

