Name: Enrolment No:			
Course: Ring Theory \& Linear Algebra II Program: B. Sc. (Hons.) Maths Course Code: MATH 3023			
SECTION A (5Qx4M=20Marks)			
S. No.		Marks	CO
Q1	Find the number of zeros of $x^{2}+3 x+2$ in the quotient ring $\frac{\mathbb{Z}}{6 \mathbb{Z}}$.	4	CO1
Q2	Prove that for any prime $p,(p-1)!\equiv-1(\bmod p)$	4	CO1
Q3	Determine whether $\mathbb{Z}[\sqrt{-5}]$ is a UFD or not. Justify your answer.	4	CO1
Q4	Find the matrix representation of the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined as $T(x, y)=(2 x+3 y, 3 x-2 y)$ with respect to the basis $\{(1,1),(1,-1)\}$.	4	$\mathrm{CO2}$
Q5	Find trace (T) if $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear transformation satisfying $T^{3}+$ $I=O$ and $T \neq-I$ (where I is identity and O is null matrix in \mathbb{R}^{3})?	4	CO 2
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx10M}=40 \text { Marks }) \end{gathered}$			
Q6	Does there exists a non-constant polynomial in the ring of polynomials $\mathbb{Z}_{p}[x]$ (p prime) that has multiplicative inverse? Justify your answer.	10	CO1
Q7	Show that the element $1+\sqrt{5}$ is not prime in $\mathbb{Z}[\sqrt{5}]$.	10	CO1
Q8	Find the minimal polynomial $m(t)(\operatorname{deg}\{m(t)\}<n)$ for the linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfying $T^{p}=I(T \neq I)$ for some prime $p<n$.	10	CO2
Q9	Consider the set $S=\{(1,1,-1),(1,1,1)\} \subset \mathbb{R}^{3}$. Find the orthogonal complement S^{\perp} in \mathbb{R}^{3}. Also, prove that S^{\perp} is a subspace of \mathbb{R}^{3}. OR Prove that the vector space of all $m \times n$ matrices $M_{m, n}(\mathbb{R})$ forms an inner product space with the inner product defined as $<A, B\rangle=\operatorname{trace}\left(B^{T} A\right) ; \text { where } A, B \in M_{m, n}(\mathbb{R})$	10	CO 3
$\begin{gathered} \text { SECTION-C } \\ (2 Q \times 20 \mathrm{M}=40 \text { Marks }) \end{gathered}$			

Q10	Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined as $T(x, y, z)=(z+3 x-2 y, 6 y-2 x-2 z, x-2 y+3 z)$ (i) Find the minimal polynomial for T. (ii)Does there exist a T-invariant vector $X \in \mathbb{R}^{3} ?$ If yes, then find it.	$\mathbf{2 0}$	$\mathbf{C O 2}$
Q11	Consider the basis $S=\{(3,1),(2,2)\}$ in the inner product space \mathbb{R}^{2} equipped with the conventional Euclidean inner product. Normalize the vectors of S using Gram-Schmidt orthonormalizing process. OR	$\mathbf{2 0}$	$\mathbf{C O 3}$
Let $P_{2}(t)$ be the vector space of polynomials of degree up to 2 with standard basis $\left\{1, t, t^{2}\right\}$. Normalize this basis using Gram-Schmidt orthonormalizing process.	Con		

