Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Statistical Methods in Petroleum Engg Program: B.Tech APE-UP Course Code: MATH 3029

Semester: VI Time : 03 hrs. Max. Marks: 100

Instructions: All questions are compulsory. However, there is internal choice in some question

			SECTIO			
	1		(5Qx4M=20)	Marks)		1
S. No.					Marks	CO
Q 1	Find out the 9 and covari	4	CO1			
Q 2	Explain the	4	CO1			
Q 3	Define the term 'Cokriging'					CO1
Q 4	Explore the hydrocarbon	4	CO2			
Q 5	Explain the data manipu	4	CO1			
			SECTIO	N B		
			(4Qx10M = 40)	Marks)		
Q 6	Core sample locations for and 5% resp more than 2 follows:					
	Ζ	Р	Ζ	р	10	CO2
	0.20	0.57	1.2	0.88		
	0.25	0.59	1.3	0.90		
	0.35	0.63	1.4	0.91		
	0.45	0.67	1.5	0.93		
	0.90	0.81	1.6	0.94		
	1.0	0.84	1.8	0.95		
Q 7	Demonstrate homogeneity porosity mea given figure	10	CO3			

	ν 0160 0120 γ .0080 .0040 .0040 0.	ity variogram based on five we Vertical direct N45E direction				
Q 8	Grid-wise Simulation study of 2 varaibles conducted are given in the table including their highest and lowest values. An output model which is a sum of two variable has been generated. Create a output grid with their maximum and minimum possible valuesVariable 1Variable 2Variable 1					CO4
	9	12	10	14	10	
	13	10	12	8		
	12	18	11	16		
	14	19	14	17		
Q 9	Explain the t-te					
	Develop a linea	10	CO5			
	taking a case s	10				
			SECTION-C (2Qx20M=40 Ma			
Q 10	Derive a princi with example t data reduction	20	CO4			
Q 11	Demonstrate the Monte-Carlo method of conditional simulation study in multi-variable datasets for reservoir simulation considering variables are spatially dependent					C05
	OR Construct a high resolution Geocellular model using Geostatistical methods					C05