UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May- 2022

Programme Name: B. Tech. (APE Gas)

Course Name : Numerical Methods

Course Code : MATH3028

Nos. of page(s) : 03

Nos. of page(s Instructions:

- i. Use of scientific calculator is allowed for calculations. Before use, please make sure that it is approved by the invigilator.
- ii. Any pages used for rough work should be attach along with the answer script.
- iii. Use of mobile is strictly prohibited.

SECTION A

S. No.		Marks	CO
Q 1	State the difference between Gauss elimination method and Gauss-Siedel method.	4	CO1
Q 2	In order to find the root of any function, I want you use graphical method. Can you point out two advantages and two disadvantages of the method.	4	CO2
Q 3	Write the full expression of 3 rd order Lagrange interpolating polynomial.	4	CO3
Q 4	How can you improve the solution obtained by Euler's method to solve ordinary differential equation? Suggest any two method.	4	CO4
Q 5	What is the difference between Dirichlet and Neumann boundary condition?	4	C05
	SECTION B		
Q 6	Use a step size, $h = 3$, and numerically integrate the following using (i) trapezoidal		
-	method, and (ii) Simpson's 1/3 rule to:		
	$\int_{0}^{6} \frac{1}{1+x^2} dx$	10	CO3
	OR		
	Use appropriate order of Polynomial regression to find the value of $f(x)$ at $x = 2$,		
	from the following data given,		
	x $f(x)$		
	1 1.648721		
	3 4.481689		
	5 12.18249 7 33.11545		
0.7		10	CO2
Q 7	Determine the roots of the function, $f(x) = 4x^3 - 6x^2 + 7x - 2.3$, using false	10	002
	position method to locate the roots. Employ an initial guess of, $x_1 = 0$, and $x_2 = 1$ and		

Semester: VI Time: 03 hours Max. Marks: 100

	make 3 iterations and calculate the approximate error, \mathcal{E}_a for each iteration.		
	OR		
	Determine the roots of the function, $f(x) = 4x^3 - 6x^2 + 7x - 2.3$, using Newton-Raphson method to locate the roots. Employ an initial guess of, $x_0 = 0$, and make 3		
	iterations and calculate the approximate error, \mathcal{E}_a for each iteration.		
Q 8	Use 4 th order Runge-Kutta method to numerically solve the following differential equation,		
	$\frac{dy}{dt} = -2y + t^2$	10	CO4
	From $t = 0$ to $t = 2$, with a step size (<i>h</i>) of 1 . The initial condition of $y(0) = 1$ is given.		
Q 9	Solve the following heat equation to obtain the temperature distribution of a long, thin rod with a length of 8 cm, from times, $t = 0$ s to $t = 3$ s. The material properties are given as in Question No. 10 . Use a step size of $\Delta x = 2$ cm, and $\Delta t = 1$ s. At $t = 0$, the temperature of the rod was 5 °C and the boundary conditions are fixed for all times at $T(0) = 100$ °C and $T(10) = 50$ °C. Here, k is the thermal diffusivity.	10	CO5
	$k\frac{\partial^2 T}{\partial x^2} = \frac{\partial T}{\partial t}$		
	SECTION-C		
Q 10	Use finite difference method to obtain the temperature distribution of the square heated plate (Fig. 1). Use a relaxation factor of 1.2. The dimensions of the plate is 8 cm × 8 cm. Use at-least two interior nodes in both horizontal and vertical directions. Note that the material is aluminum with specific heat, $C = 0.2174$ cal/(g · ⁰ C) and density, $\rho = 2.7$ g/cm ³ . The thermal conductivity, $k' = 0.49$ cal/(s · cm · ⁰ C),	20	CO5
	$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$		

