N	m	Δ.

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Statistical Mechanics Program: B. Sc (Honors) Physics Course Code: PHYS 3004 Semester: VI
Time : 03 hrs.
Max. Marks: 100

Instructions: Draw a neat and clean diagram wherever it is needed.

SECTION A (5Qx4M=20Marks)

S. No.	(SQATIVI ZUIVIAI KS)	Marks	СО
Q 1	Deduce the Wien's Law from the Planck's law of Blackbody radiation.		CO1
Q.2	Determine the wavelength corresponding to the maximum emissivity of a blackbody at a temperature equal to 300K. Take the Wien's constant equal to 2898 μm K.		CO2
Q.3	Define the following terms (a) Phase space (b) Macro and Micro states (c) Ensemble and types of ensemble	4	CO1
Q.4	Discuss the variation of the fermi probability function, $f(\epsilon)$ with energy, ϵ at different temperatures.	4	CO1
Q.5	Three distinguishable particle have to be accommodated in four available states. Find the number of ways in which this can be done if the particles obey M-B statistics.	4	CO1
	SECTION B (4Qx10M= 40 Marks)	T	ı
Q.6	Consider a system of N particles and a phase space consisting of only two states with energies 0 and, ϵ . Calculate the partition function and the internal energy.	10	CO2
Q.7	Consider the system of N elements with two non-degenerate energy levels ϵ_1 and ϵ_2 where ϵ_2 is the excited state. Apply the classical approach to show that the heat capacity at constant volume, C_V is given by $C_V = N k_B \left(\frac{\Theta}{T}\right)^2 \frac{e^{\frac{\Theta}{T}}}{\left(1 + e^{\frac{\Theta}{T}}\right)^2} \text{where, } \Theta = \frac{\epsilon}{k_B} \text{is called characteristic temperature.}$	10	CO3
Q.8	Apply Bose-Einstein statistics to photon gas and derive the Planck's law for the spectral distribution of energy in black body radiation.	10	CO3
Q.9	Calculate the number of modes in a chamber of volume 1m^3 in the frequency range 0.6×10^{14} Hz to 0.61×10^{14} Hz.	10	CO2

SECTION-C (2Qx20M=40 Marks)				
Q.10	Derive Sackur Tetrod equation for the entropy of an ideal gas. How does it resolve the Gibb's paradox?	20		
	OR Consider the non-relativistic electron gas with electron density, n. Demonstrate that the total internal energy of a non-relativistic fermion system is greater than that predicted classically. Mention the reason behind it.	20	CO4	
Q.11	(a) Explain the Bose-Einstein condensation. How does it differ from ordinary condensation? Obtain an expression for the critical temperature at which this phenomenon sets in.	10	CO2	
	(b) Show that the distribution function of the Bosons for the most probable macrostate is given by $n_s = \frac{g_s}{e^{\alpha + \beta \epsilon_s} - 1}$ where $\alpha \wedge \beta$ are the Lagrange multipliers.	10	CO3	