Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Computational Fluid Dynamics

Program: B. Tech. ASE Course Code: ASEG 4005P Semester: VI
Time : 03 hrs.
Max. Marks: 100

Instructions: Assume missing data, if any, appropriately. All the symbols used in the paper have their usual meaning in Fluid Mechanics and Computational Fluid Dynamics.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO
Q 1	Discuss various types of boundary conditions implemented for solution of governing equations of fluid flows.	4	CO1
Q 2	Illustrate the Implicit and Explicit approaches for solution of one dimensional transient heat conduction equation.	4	CO2
Q 3	Formulate any two approximations for the evaluation surface integral of fluxes over the east face of a two-dimensional control volume.	4	CO2
Q 4	Discuss the advantages and disadvantages of unstructured grids over structured grids.	4	CO2
Q 5	What is artificial viscosity? Discuss the effect of artificial viscosity on the structure of a shock wave. Suggest ways to alleviate artificial viscosity.	4	CO3

SECTION B (4Qx10M= 40 Marks)

Q 6	Analyze the stability of the following explicit for the solution of the scalar advection equation hence deduce the stability criterion for this scheme. $u_i^{n+1} = u_i^n - c \frac{\Delta t}{\Delta x} \frac{u_{i+1}^n - u_{i-1}^n}{2}$	10	CO3
Q 7	Discuss an explicit time marching algorithm for the solution of transient Euler equations in two dimensions.	10	CO3

Q 8	Derive a second order accurate finite difference stencil for the first order			
	derivative $\left(\frac{\partial u}{\partial y}\right)_{i,j}$ using variable (u) values on one-sided points only.	10	CO2	
Q 9	Define the UPWIND interpolation scheme for the evaluation of fluxes at face			
	centre using the nodal values on a structured finite volume grid. Find an	10	CO2	
	expression for the artificial diffusivity introduced by this scheme.			
SECTION-C (2Qx20M=40 Marks)				
Q 10	Consider the Couette flow between parallel plates characterised by the			
	parabolic equation			
	$\frac{\partial u}{\partial t} - v \frac{\partial^2 u}{\partial y^2} = 0. v = 0.000217 \text{ m}^2/\text{s}$			
	Initial conditions at $t = 0$ $\begin{cases} u = u_0 = 40 \text{ m/s}, & y = 0 \\ u = 0, & 0 < y \le h \end{cases}$			
	Boundary conditions at $t > 0$ $\begin{cases} u = u_o = 40 \text{ m/s}, & y = 0 \\ u = 0, & y = h \end{cases}$			
	y Top Plate Fixed Bottom Plate Fluid Motion Write a code in a programing language of your choice to solve the above equation using an explicit scheme for flowfield after 50 iterations with each time step of 0.1 second. Divide the one-dimensional domain into 41 grid points including the boundary points. OR Consider the problem of source-free transient heat conduction in an insulated rod whose ends are maintained at constant temperatures of 100 °C and 500 °C respectively. The one- dimensional problem sketched in figure below,	20	CO4	

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	Calculate the temperatures at a minimum of 5 internal points in the rod after 5 iterations using the FTCS scheme. The transient distribution of heat is governed by, $\frac{\partial T}{\partial t} - \alpha \frac{\partial^2 T}{\partial t^2} = 0; \alpha = 0.0002 \text{ m}^2/\text{s}.$		
Q 11	$\frac{\partial t}{\partial t^2} = 0, \alpha = 0.0002 \text{ III / S.}$ Choose time step as large as possible. (a) List two application of CFD in each of the following domains of science		
	 i. Biomedical engineering ii. Rocket Propulsion iii. Civil Engineering iv. Environmental Science v. Renewable Energy 	20	CO1
	(b) Transform the following continuity equations into the form mentioned in bracket. [10] $ i. \frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \vec{V} \right) = 0 \qquad \qquad \text{{Differential Non- Conservation Form}} \\ ii. \frac{\partial}{\partial t} \iiint \rho \ d\Omega + \iint \rho \vec{V} \cdot \vec{dS} = 0 \text{{Differential Conservation Form}} $		