Name: Enrolment No:							
Programme Name: B. Tech. APE (Gas) Semester $:$ IV Course Name $:$ Natural Gas Engineering Time Course Code $:$ CHCE 3001 $: 03 \mathrm{hrs}$ Nos. of page(s) $:$ 4 Max. Marks Instructions: $\quad \checkmark$ Draw diagrams wherever necessary \checkmark Attempt questions in sequence \checkmark Appendix with all the tables and graphs are attached at the end of the question paper							
SECTION A (5 X 4= 20 Marks) Answer all questions							
S. No.						Marks	CO
1.	Explain bio	and therm	mechanism			4M	CO1
2.	The follow systems. T hydrocarbo	list of the positions ms.	ositional ressed in	of differe of mol\%	rocarbon sify System \#4 12.15 3.10 2.51 2.61 2.78 4.85 72.00	4M	CO 2
3.	Describe the working principle of an axial flow compressor.					4M	CO3
4.	Compare orifice types including their effect on gas flow measurement.					4M	CO 4
5.	Articulate the functions of a well-designed separator.					4M	CO5
SECTION B ($4 \times 10=40$ Marks) Answer all questions							
6.	a) Solve for compressibility for the given gas composition at 200 psia and $80^{\circ} \mathrm{F}$. $\mathrm{N}_{2}-1 \%, \mathrm{C}_{1}-89 \%, \mathrm{C}_{2}-5 \%$ and $\mathrm{C}_{3+}=5 \%$. Assume the C3+ fraction to be equivalent to $\mathrm{n}-$ C_{5}.					$\begin{gathered} (5+5) \\ 10 \mathrm{M} \end{gathered}$	$\begin{gathered} \mathrm{CO} 1 \\ \& \\ \mathrm{CO} 2 \end{gathered}$

	b)Illustrate the P-T diagram of ethane and heptane system		
7.	A gas is being compressed from 150 psia and $200^{\circ} \mathrm{F}$ to 2000 psia. Determine its compression parameters at the suction end. The gas has the following composition expressed as mole fraction. $\mathrm{C}_{1}=0.9134, \mathrm{C}_{2}=0.0456, \mathrm{C}_{3}=0.0175$, $\mathrm{i}-\mathrm{C}_{4}=0.0043$, n $\mathrm{C}_{4}=0.0044, \mathrm{i}-\mathrm{C}_{5}=0.0148$.	10M	CO3
8.	A 4-in diameter orifice meter is installed in a pipe with an inside diameter of 12.09 in . The differential pressure is measured at 30 in of water and the static pressure upstream is 600 psig . Gas gravity $=0.6$, gas flowing temperature $=70^{\circ} \mathrm{F}$. The base temperature and the base pressure are $60^{\circ} \mathrm{F}$ and 14.7 psia , respectively. Assuming flange taps, calculate the flow rate in standard $\mathrm{ft}^{3} / \mathrm{h}$. The barometric pressure is 14.5 psia .	10M	CO 4
9.	Illustrate the working of a vertical separator with a neat diagram, its advantages and disadvantages.	10M	CO5
	SECTION C ($2 \times 20=40$ Marks)		
10.	Solve the adiabatic horsepower required to compress 1 MMcfd of a 0.6 grvaity natural gas from 100 psia and $80^{\circ} \mathrm{F}$ to 1600 psia . Intercoolers cool the gas to $80^{\circ} \mathrm{F}$. What is the heat load on the intercoolers and what is the final gas temperature. Use: a) The enthalpy -entropy diagram	20M	CO3

	b) Analytical expressions.		
11.	Meter equipped with flange taps, with static pressure from downstream tap: D1 = line size=8.071 in. actual ID D2=orifice size $=1$ in Flowing temperature $=65^{\circ} \mathrm{F}$ Ambient temperature $=70^{\circ} \mathrm{F}$ Base pressure $=14.65 \mathrm{psia}$ Base temperature $=50^{\circ} \mathrm{F}$ Specific gravity $=0.570$ Total heating value=999.1 Btu/cu ft Mole fraction of nitrogen content $=0.011$ Mole fraction of carbon dioxide content $=0$ Average differential head=50 in water Average downstream gauge pressure $=370$ psig Solve for the orifice flow constant and the quantity rate of flow for 1 hour at base conditions	20M	CO4
	(Or)		
	a)A metering system is required to measure approximately 8.5 MMSCFD of 0.62 gravity gas at a line pressure of 250 psig The meter run is to be made of 8 in pipe (7.981 in ID). Determine the size of the orifice plate to give a differential of about 50 inches. Flowing temperature averages about $80^{\circ} \mathrm{F}$. Use flange taps. b)A 2 in [5.1 cm] orifice plate is used in 3.438 in [8.7 cm] ID pipeline. The differential pressure is 30 in of water. The static pressure upstream is 80 psia and the specific gravity is 0.65 . The flowing temperature of gas is $80^{\circ} \mathrm{F}$. Flange taps are used. Assume $F t b=F p b=1$. Calculate the gas flow rate through the pipe.	$\begin{gathered} (10+10) \\ 20 \mathrm{M} \end{gathered}$	CO 4

