Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

Supplementary Examination, May 2022

Programme Name: B. Tech. APE (Gas)

Course Name : Natural Gas Engineering

Course Code : CHCE 3001

Semester : IV

Time : 03 hrs

Max. Marks : 100

Nos. of page(s) : 4

Instructions:

- ✓ Draw diagrams wherever necessary
- ✓ Attempt questions in sequence
- ✓ Appendix with all the tables and graphs are attached at the end of the question paper

SECTION A (5 X 4= 20 Marks)

Answer all questions

			Answer al	i questions			
S. No.						Marks	CO
1.	Explain biogenic and thermogenic mechanisms?					4M	CO1
2.	The following is a list of the compositional analysis of different hydrocarbon systems. The compositions are expressed in the terms of mol%. Classify hydrocarbon systems.						
	Component	System #1	System #2	System #3	System #4	4M	CO2
	Cı	68.00	25.07	60.00	12.15		
	C2	9.68	11.67	8.15	3.10		
	C ₃	5.34	9.36	4.85	2. 51		
	C4	3.48	6.00	3.12	2.61		
	C5	1.78	3.98	1.41	2.78		
	C ₆	1.73	3.26	2.47	4.85		
	C7+	9.99	40.66	20.00	72.00		
3.	Describe the working principle of an axial flow compressor.						CO3
4.	Compare orifice types including their effect on gas flow measurement.					4M	CO4
5.	Articulate the functions of a well-designed separator.					4M	CO5
	1		SECTION B (4	·			
6.	a) Solve for co	ompressibility fo		l questions	nsia and 80°F		CO1
0.	a) Solve for compressibility for the given gas composition at 200 psia and 80°F.						&
	N_2 -1%, C_1 -89%, C_2 -5% and C_{3+} =5%. Assume the C3+ fraction to be equivalent to n-						CO2
	C ₅ .						
	C 3.						

	b)Illustrate the P-T diagram of ethane and heptane system		
	1400 1200		
7.	A gas is being compressed from 150 psia and 200°F to 2000 psia. Determine its		
	compression parameters at the suction end. The gas has the following composition	10M	CO3
	expressed as mole fraction. C_1 =0.9134, C_2 =0.0456, C_3 =0.0175, i- C_4 =0.0043, n- C_4 =0.0044, i- C_5 =0.0148.		
8.	A 4-in diameter orifice meter is installed in a pipe with an inside diameter of 12.09 in.		
0.	The differential pressure is measured at 30 in of water and the static pressure upstream		GO 4
	is 600 psig. Gas gravity= 0.6, gas flowing temperature= 70°F. The base temperature	10M	CO4
	and the base pressure are 60°F and 14.7 psia, respectively. Assuming flange taps,	101/1	
	calculate the flow rate in standard ft ³ /h. The barometric pressure is 14.5 psia.		
9.	Illustrate the working of a vertical separator with a neat diagram, its advantages and	101/4	CO5
	disadvantages.	10M	
	SECTION C (2 x 20=40 Marks)		
10.	Solve the adiabatic horsepower required to compress 1 MMcfd of a 0.6 grvaity natural		
	gas from 100 psia and 80°F to 1600 psia. Intercoolers cool the gas to 80°F. What is the		
	heat load on the intercoolers and what is the final gas temperature.	20M	CO3
	Use:		
	a) The enthalpy –entropy diagram		

	b) Analytical expressions.		
11.	Meter equipped with flange taps, with static pressure from downstream tap:		
	D1= line size=8.071 in. actual ID		
	D2=orifice size=1 in	20M	CO4
	Flowing temperature=65°F		
	Ambient temperature=70°F		
	Base pressure=14.65 psia		
	Base temperature= 50°F		
	Specific gravity=0.570		
	Total heating value=999.1 Btu/cu ft		
	Mole fraction of nitrogen content=0.011		
	Mole fraction of carbon dioxide content=0		
	Average differential head=50 in water		
	Average downstream gauge pressure=370 psig		
	Solve for the orifice flow constant and the quantity rate of flow for 1 hour at base		
	conditions		
	(Or)		
	a)A metering system is required to measure approximately 8.5 MMSCFD of 0.62		
	gravity gas at a line pressure of 250 psig The meter run is to be made of 8 in pipe		
	(7.981 in ID). Determine the size of the orifice plate to give a differential of about 50		
	inches. Flowing temperature averages about 80°F. Use flange taps.		
		(10+10)	CO4
	b)A 2 in [5.1 cm] orifice plate is used in 3.438 in [8.7 cm] ID pipeline. The differential	20M	
	pressure is 30 in of water. The static pressure upstream is 80 psia and the specific		
	gravity is 0.65. The flowing temperature of gas is 80°F. Flange taps are used. Assume		
	Ftb = Fpb = 1. Calculate the gas flow rate through the pipe.		