Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Supplementary Examination, May 2022

Course: Heat TransferProgram: B. Tech. (CERP)Course Code:CHCE 2009

Semester : IV Time : 03 hrs. Max. Marks : 100

Instructions:

✓ Attempt all questions from Section-A (each carrying 4 marks), Section-B (each carrying 10 marks) and Section-C (carrying 20 marks).

Assume suitable data wherever necessary. The notations used here have the usual meanings.

SECTION-A				
S. No.		Marks	СО	
1.	What are the different modes of heat transfer? Explain.	4 M	CO1	
2.	Differentiate between natural and forced convection?	4 M	CO1	
3.	What are the types of condensation processes? Explain.	4 M	CO3	
4.	What are the different modes of heat transfer? Explain.	4 M	CO1	
5.	What is LMTD correction factor?	4 M	CO4	
SECTION-B				
6.	Derive an expression for three dimensional steady state heat conduction in a Cartesian coordinate system	10	CO1	
7.	Define Boiling. Draw the boiling curve for water and show different regimes on that. Explain Nucleate boiling regime and factors affecting it.	10	CO3	
8.	A counter-flow double-pipe heat exchanger is to heat water from 20 °C to 40 °C at a rate of 1.2 kg/s. The heating is to be accomplished by geothermal water available at 150 °C at a mass flow rate of 2kg/s. The inner tube is thin-walled and has a diameter of 1.5cm. If the overall heat transfer coefficient of the heat exchanger is 640 W/m ² .°C, determine the length of the heat exchanger required to achieve the desired heating.	10	CO4	
9.	Derive the expression for logarithmic mean temperature difference for co-current flow heat exchanger.	10	CO4	

	SECTION-C				
10.	Consider a shell and tube heat exchanger constructed from a 0.0254m OD tube to cool	20	CO4		
	6.93 kg/s of a 95% ethyl alcohol solution (C _P 3810 J/kg.K) from 66 $^{\circ}$ C to 42 $^{\circ}$ C using				
	6.30 Kg/s of water available at 10 °C (C _P 4187 J/kg.K). In the heat exchanger 78 tubes				
	will be used. Assume that the overall heat transfer coefficient based on the outer tube				
	area is 656 W/m^2 .K. Calculate the surface area and the length of heat exchanger for				
	each of the following arrangement.				
	a) Parallel flow shell and tube heat exchanger				
	b) Counter flow shell and tube heat exchanger				
11.	A single effect evaporator is to concentrate 8500 kg/hr of 20% solution of sodium				
	hydroxide to 50% solids. The gauge pressure of the steam is 1.37 atm; the absolute				
	pressure in the vapour space is 100 mmHg. The overall coefficient is estimated to be				
	1400 W/m ² . °C. The feed temperature is 37.8 °C. Calculate the amount of steam				
	consumed, the economy and the heating surface required.				
	Data:				
	Enthalpy of 20% solution = 127.931 kJ/kg	20	CO2		
	Enthalpy of 50% solution = 513.95 kJ/kg				
	B.P. of water at 100 mmHg = $51.1 ^{\circ}\text{C}$				
	B.P. of solution at 100 mmHg = $91.67 ^{\circ}\text{C}$				
	Enthalpy of water vapour at 91.67 0 C = 2672 kJ/kg				
	Heat of vaporization of steam (B.P. 126.11 0 C) at 1.37 atm(g) = 18466 kJ/kg				
	The condensation temperature of steam= 126.1 °C				