

Q. 7	Given $\mathrm{f}(\mathrm{x})=\|\mathrm{x}\|$ in the domain $-\mathrm{a}<\mathrm{x}<\mathrm{a}$ and $f(x)=f(x+2 a)$ a) Plot the function $\mathrm{f}(\mathrm{x})$ in the domain $-2 \mathrm{a}<\mathrm{x}<2 \mathrm{a}$ b) Is the function f (x) continuous in $-\mathrm{a}<\mathrm{x}<\mathrm{a}$? c) Comment on differentiability of the function in the domain $-a<x<a$ d) Is the function analytic in the domain $-\mathrm{a}<\mathrm{x}<\mathrm{a}$.	10	CO1
Q. 8	Expression for Fourier series expansion of a periodic function $f(x)$ with periodicity 2 a , is given below: $\mathrm{f}(\mathrm{x})=\mathrm{a}_{0} / 2+\sum_{1}^{\square} a n \cos (n \pi x / a)+\sum_{1}^{\square} b n \sin (n \pi x / a)$ a) Write the expressions for a_{0}, a_{n} and b_{n} b) Given $f(t)=t$; which of the term/terms a_{0}, a_{n} and b_{n} will be zero?	10	CO2
Q. 9	Attempt any one (Either I or II) I. Find Laplace Transform of the function $y(t)$, which satisfies the Ordinary Differential Equation: $y^{\prime \prime}-10 . y^{\prime}+9 . y=5 . t$; where y ' $=$ dy(t)/dt. Etc. Initial Conditions: $y(0)=-1$ and $y^{\prime}(0)=2$ OR II. Find Fourier Transform ($\mathrm{U}(\mathrm{k}, \mathrm{t})$) of the function $\mathrm{u}(\mathrm{x}, \mathrm{t})$, which satisfies the Partial Differential Equation: $u_{x x}=u_{t}$; where $u_{x x}=\frac{\partial^{2} u(x, t)}{\partial x^{2}} \text { and } u_{t}=\frac{\partial u}{\partial t}$ Given $\mathrm{u}(\mathrm{x}, 0)=\delta(\mathrm{x})$, where $\delta(\mathrm{x})$ is the Dirac delta function.	10	$\mathrm{CO} 4$ CO4
$\begin{gathered} \text { SECTION-C } \\ (2 Q \times 20 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
	Attempt all questions. Please note that Q. 11 has a choice.		
Q. 10	Use Laplace Transform to solve the following Ordinary Differential	20	CO4

	Equation: $2 y^{\prime \prime}+3 y^{\prime}-2 y=t . e^{-2 t} ;$ where $y^{\prime}=d y(t) / d t$. Etc. and the Initial Conditions are $y(0)=0$ and $y^{\prime}(0)=-2$ NOTE: You may not evaluate the convolution function/functions		
Q. 11	Attempt any one (Either I or II): I. Find the Fourier series for Saw Tooth Signal given by $\begin{array}{rlrrr} \mathrm{f}(\mathrm{x}) & =-\mathrm{x} & \text { for } & & -\pi<\mathrm{x}<0 \\ & =\pi-\mathrm{x} & & \text { for } & \\ & 0<\mathrm{x}<\pi \end{array}$ And, $\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x}+2 \pi)$ OR II. Find the Fourier transform of the function $\left.\mathrm{f}(\mathrm{x})=\frac{1}{\sigma} i b\right]$ Where, v and σ are constants.	20	$\mathrm{CO} 2$ $\mathrm{CO} 2$

