Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2022

Course: Mathematical Physics -III

Semester: IV

Program:50040095 B. Sc. (Hon.) PhysicsTime: 03 hrs.Course Code:50048535 Mathematical Physics IIIMax. Marks: 100

Instructions:

SECTION A (5Qx4M=20Marks)

	Marks	СО
Attempt all Questions (Short answer type)		
Draw the following curves in Z plane (Z is a complex variable)		
$a \dot{c} Z-3 = 5b \dot{c} Z = 3+i$	04	CO1
Draw simply and multiply connected regions	04	CO1
A Fourier Series for a function f(x) is given as		
$f(x) = a_0/2 + \sum_{n=1}^{\square} a_n \cos(nx) + \sum_{n=1}^{\square} b_n \sin(nx)$	04	CO2
What should be the condition/conditions imposed on the above series/function $f(x)$ so that we can perform term by term a) Integration and b) differentiation of the above equation.		
f(t) is a non-periodic function; write the expression for Fourier transform of f(t).	04	CO3
Given L(s) is the Laplace Transform for a function f (t). Write the expression for the Laplace Transform of the function f (a.t); where 'a' is a constant.	04	CO3
SECTION B		
(4Qx10M= 40 Marks)		
Attempt all questions. Please note that Q.9 has a choice.		
Find the three roots of Equation $Z^3 = i$		
	Draw the following curves in Z plane (Z is a complex variable) $a \ \ z-3 = 5b \ \ \ \ \ \ \ \ \ \$	Attempt all Questions (Short answer type) Draw the following curves in Z plane (Z is a complex variable) $a \dot{c} Z-3 = 5b \dot{c} Z = 3 + i$ Draw simply and multiply connected regions 4 Fourier Series for a function $f(x)$ is given as $f(x) = a_0/2 + \sum_{i=1}^{n} a_n \cos(nx) + \sum_{i=1}^{n} b_n \sin(nx)$ What should be the condition/conditions imposed on the above series/function $f(x)$ so that we can perform term by term a) Integration and b) differentiation of the above equation. $f(t)$ is a non-periodic function; write the expression for Fourier transform of $f(t)$. Given $L(s)$ is the Laplace Transform for a function $f(t)$. Write the expression for the Laplace Transform of the function $f(a)$ where 'a' is a constant. SECTION B (4Qx10M=40 Marks)

Q.7	Given f (x) = x in the domain -a < x < a and f (x) = f (x+2a) a) Plot the function f (x) in the domain -2a < x < 2a b) Is the function f (x) continuous in -a < x < a? c) Comment on differentiability of the function in the domain -a < x < a d) Is the function analytic in the domain -a < x < a.	10	CO1
Q.8	Expression for Fourier series expansion of a periodic function $f(x)$ with periodicity $2a$, is given below: $f(x) = a_0/2 + \sum_{1}^{\square} a n \cos(n\pi x/a) + \sum_{1}^{\square} b n \sin(n\pi x/a)$ a) Write the expressions for a_0 , a_n and b_n b) Given $f(t) = t$; which of the term/terms a_0 , a_n and b_n will be zero?	10	CO2
Q.9	Attempt any one (Either I or II) I. Find Laplace Transform of the function $y(t)$, which satisfies the Ordinary Differential Equation: $y'' - 10.y' + 9.y = 5.t$; where $y' = dy(t)/dt$. Etc. Initial Conditions: $y(0) = -1$ and $y'(0) = 2$		CO4
	II. Find Fourier Transform (U (k, t)) of the function u(x, t), which satisfies the Partial Differential Equation: $u_{xx} = u_t$; where $u_{xx} = \frac{\partial^2 u(x,t)}{\partial x^2}$ and $u_t = \frac{\partial u}{\partial t}$ Given u (x,0) = δ (x), where δ (x) is the Dirac delta function.	10	CO4
	SECTION-C (2Qx20M=40 Marks) Attempt all questions. Please note that Q. 11 has a choice.		
Q.10	Use Laplace Transform to solve the following Ordinary Differential	20	CO4

	Equation: $2y'' + 3y' - 2y = t$. e^{-2t} ; where $y' = dy(t)/dt$. Etc. and the		
	Initial Conditions are $y(0) = 0$ and $y'(0) = -2$		
	NOTE: You may not evaluate the convolution function/functions		
Q.11	Attempt any one (Either I or II):		
	I. Find the Fourier series for Saw Tooth Signal given by $f(x) = -x \qquad \text{for} \qquad -\pi < x < 0$ $= \pi - x \qquad \text{for} \qquad 0 < x < \pi$		CO2
	And, $f(x) = f(x+2\pi)$	20	
	OR		
	II. Find the Fourier transform of the function $f(x) = \frac{1}{\sigma} \dot{c} \dot{c}$		CO2
	Where, ν and σ are constants.		